Do you want to publish a course? Click here

Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions

77   0   0.0 ( 0 )
 Added by Manish Shrimali
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude unsynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for paradigmatic chaotic model of Rossler oscillators and Mac-arthur ecological model.



rate research

Read More

In this paper we present a systematic, data-driven approach to discovering bespoke coarse variables based on manifold learning algorithms. We illustrate this methodology with the classic Kuramoto phase oscillator model, and demonstrate how our manifold learning technique can successfully identify a coarse variable that is one-to-one with the established Kuramoto order parameter. We then introduce an extension of our coarse-graining methodology which enables us to learn evolution equations for the discovered coarse variables via an artificial neural network architecture templated on numerical time integrators (initial value solvers). This approach allows us to learn accurate approximations of time derivatives of state variables from sparse flow data, and hence discover useful approximate differential equation descriptions of their dynamic behavior. We demonstrate this capability by learning ODEs that agree with the known analytical expression for the Kuramoto order parameter dynamics at the continuum limit. We then show how this approach can also be used to learn the dynamics of coarse variables discovered through our manifold learning methodology. In both of these examples, we compare the results of our neural network based method to typical finite differences complemented with geometric harmonics. Finally, we present a series of computational examples illustrating how a variation of our manifold learning methodology can be used to discover sets of effective parameters, reduced parameter combinations, for multi-parameter models with complex coupling. We conclude with a discussion of possible extensions of this approach, including the possibility of obtaining data-driven effective partial differential equations for coarse-grained neuronal network behavior.
Many biological and chemical systems exhibit collective behavior in response to the change in their population density. These elements or cells communicate with each other via dynamical agents or signaling molecules. In this work, we explore the dynamics of nonlinear oscillators, specifically Stuart-Landau oscillators and Rayleigh oscillators, interacting globally through dynamical agents in the surrounding environment modeled as a quorum sensing interaction. The system exhibits the typical continuous second-order transition from oscillatory state to death state, when the oscillation amplitude is small. However, interestingly, when the amplitude of oscillations is large we find that the system shows an abrupt transition from oscillatory to death state, a transition termed explosive death. So the quorum-sensing form of interaction can induce the usual second-order transition, as well as sudden first-order transitions. Further in case of the explosive death transitions, the oscillatory state and the death state coexist over a range of coupling strengths near the transition point. This emergent regime of hysteresis widens with increasing strength of the mean-field feedback, and is relevant to hysteresis that is widely observed in biological, chemical and physical processes.
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a non-delayed Langevin equation, which allows us to analytically compute the distribution of frequencies, and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
Dynamic-mode decomposition (DMD) is a versatile framework for model-free analysis of time series that are generated by dynamical systems. We develop a DMD-based algorithm to investigate the formation of functional communities in networks of coupled, heterogeneous Kuramoto oscillators. In these functional communities, the oscillators in the network have similar dynamics. We consider two common random-graph models (Watts--Strogatz networks and Barabasi--Albert networks) with different amounts of heterogeneities among the oscillators. In our computations, we find that membership in a community reflects the extent to which there is establishment and sustainment of locking between oscillators. We construct forest graphs that illustrate the complex ways in which the heterogeneous oscillators associate and disassociate with each other.
146 - Yusuke Suda , Koji Okuda 2015
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this paper, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا