Do you want to publish a course? Click here

Tuning the morphology and magnetic properties of single-domain SrFe8Al4O19 particles prepared by citrate auto-combustion route

65   0   0.0 ( 0 )
 Added by Evgeny Gorbachev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single-domain particles of SrFe8Al4O19 were prepared by thermal treatment at 1473 K of porous products of citrate-nitrate auto-combustion, and the influence of synthesis time on the particle morphology and magnetic properties was studied. The procedure allows to obtain SrFe8Al4O19 particles with mean diameters 100 - 460 nm, and their coercivity ranges from 14.5 to 18.4 kOe, while ferromagnetic resonance frequencies vary from 149 to 164 GHz.



rate research

Read More

Perovskite manganite La0.5Ca0.5-x xMnO3 (LCMO) nanomaterials were elaborated using the sucrose modified auto combustion method. Rietveld refinements of the X-ray diffraction patterns of the crystalline structure confirm a single-phase orthorhombic state with Pbnm space group (No. 62). The Ca-vacancies were voluntarily created in the LCMO structure in order to study their influence on the magnetic behaviour in the system. The magnetic susceptibility was found to be highly enhanced in the sample with Ca-vacancies. Paramagnetic-to-ferromagnetic phase transition was evidenced in both samples around 254 K. This transition is, characterized by a drastic jump of the susceptibility in the sample with Ca-vacancies. The maximum of entropy change, observed for both compounds at magnetic field of 6T was 2.30 J kg-1K-1 and 2.70 J kg-1K-1 for the parent compound and the lacunar one respectively. The magnetocaloric adiabatic temperature change value calculated by indirect method was 5.6 K and 5.2 K for the non-lacunar and Ca-vacancy compound, respectively. The Ca-lacunar La0.5Ca0.5-x xMnO3 (x=0.05) reported in this work demonstrated overall enhancement of the magnetocaloric effect over the LCMO. The technique used to elaborate LCMO materials was beneficial to enhance the magnetocaloric effect and magnetic behaviour. Therefore, we conclude that this less costly environmentally friendly system can be considered as more advantageous candidate for magnetic refrigeration applications then the commonly Gd-based compounds.
(In1-xFex)2O3 polycrystalline samples with x = (0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) have been synthesized by a gel combustion method. Reitveld refinement analysis of X raydiffraction data indicated the formation of single phase cubic bixbyite structure without any parasitic phases. This observation is further confirmed by high resolution transmission electron microscopy (HRTEM) imaging, and indexing of the selected-area electron diffraction (SAED) patterns, X-ray Absorption Spectroscopy (XAS) and Raman Spectroscopy. DC Magnetization studies as a function of temperature and field indicatethat they are ferromagnetic with Curie temperature (TC) well above room temperature.
The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C-C dimer pair accompanied by stronger C-C and weaker C-Ti hybridizations as the C-C distance becomes smaller. As the C-C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.
Huge deformations of the crystal lattice can be achieved in materials with inherent structural instability by epitaxial straining. By coherent growth on seven different substrates the in-plane lattice constants of 50 nm thick Fe70Pd30 films are continuously varied. The maximum epitaxial strain reaches 8,3 % relative to the fcc lattice. The in-plane lattice strain results in a remarkable tetragonal distortion ranging from c/abct = 1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. This has dramatic consequences for the magnetic key properties. Magnetometry and X-ray circular dichroism (XMCD) measurements show that Curie temperature, orbital magnetic moment, and magnetocrystalline anisotropy are tuned over broad ranges.
We show that CdMnTe self-assembled quantum dots can be formed by depositing a submonolayer of Mn ions over a ZnTe surface prior to deposition of the CdTe dot layer. Single dot emission lines and strongly polarized quantum dot photoluminescence in an applied magnetic field confirm the presence of Mn in individual quantum dots. The width of PL lines of the single CdMnTe dots is 3 meV due to magnetic moment fluctuations of the Mn ions. After rapid thermal annealing, the emission lines of individual magnetic quantum dots narrow significantly to 0.25 meV showing that effect of magnetic fluctuations is strongly reduced most probably due to an increase in the average quantum dot size. These results suggest a way to tune the spin properties of magnetic quantum dots.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا