Do you want to publish a course? Click here

Generating Function for Tensor Network Diagrammatic Summation

102   0   0.0 ( 0 )
 Added by Ji-Yao Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The understanding of complex quantum many-body systems has been vastly boosted by tensor network (TN) methods. Among others, excitation spectrum and long-range interacting systems can be studied using TNs, where one however confronts the intricate summation over an extensive number of tensor diagrams. Here, we introduce a set of generating functions, which encode the diagrammatic summations as leading order series expansion coefficients. Combined with automatic differentiation, the generating function allows us to solve the problem of TN diagrammatic summation. We illustrate this scheme by computing variational excited states and dynamical structure factor of a quantum spin chain, and further investigating entanglement properties of excited states. Extensions to infinite size systems and higher dimension are outlined.



rate research

Read More

124 - Glen Evenbly 2015
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical many-body system or the Euclidean path integral of a 1D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2D classical statistical and 1D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.
Understanding dissipation in 2D quantum many-body systems is a remarkably difficult open challenge. Here we show how numerical simulations for this problem are possible by means of a tensor network algorithm that approximates steady-states of 2D quantum lattice dissipative systems in the thermodynamic limit. Our method is based on the intuition that strong dissipation kills quantum entanglement before it gets too large to handle. We test its validity by simulating a dissipative quantum Ising model, relevant for dissipative systems of interacting Rydberg atoms, and benchmark our simulations with a variational algorithm based on product and correlated states. Our results support the existence of a first order transition in this model, with no bistable region. We also simulate a dissipative spin-1/2 XYZ model, showing that there is no re-entrance of the ferromagnetic phase. Our method enables the computation of steady states in 2D quantum lattice systems.
We present several results relating to the contraction of generic tensor networks and discuss their application to the simulation of quantum many-body systems using variational approaches based upon tensor network states. Given a closed tensor network $mathcal{T}$, we prove that if the environment of a single tensor from the network can be evaluated with computational cost $kappa$, then the environment of any other tensor from $mathcal{T}$ can be evaluated with identical cost $kappa$. Moreover, we describe how the set of all single tensor environments from $mathcal{T}$ can be simultaneously evaluated with fixed cost $3kappa$. The usefulness of these results, which are applicable to a variety of tensor network methods, is demonstrated for the optimization of a Multi-scale Entanglement Renormalization Ansatz (MERA) for the ground state of a 1D quantum system, where they are shown to substantially reduce the computation time.
Recently, a class of tensor networks called isometric tensor network states (isoTNS) was proposed which generalizes the canonical form of matrix product states to tensor networks in higher dimensions. While this ansatz allows for efficient numerical computations, it remained unclear which phases admit an isoTNS representation. In this work, we show that two-dimensional string-net liquids, which represent a wide variety of topological phases including discrete gauge theories, admit an exact isoTNS representation. We further show that the isometric form can be preserved after applying a finite depth local quantum circuit. Taken together, these results show that long-range entanglement by itself is not an obstruction to isoTNS representation and suggest that all two-dimensional gapped phases with gappable edges admit an isoTNS representation.
It is well known that unitary symmetries can be `gauged, i.e. defined to act in a local way, which leads to a corresponding gauge field. Gauging, for example, the charge conservation symmetry leads to electromagnetic gauge fields. It is an open question whether an analogous process is possible for time reversal which is an anti-unitary symmetry. Here we discuss a route to gauging time reversal symmetry which applies to gapped quantum ground states that admit a tensor network representation. The tensor network representation of quantum states provides a notion of locality for the wave function coefficient and hence a notion of locality for the action of complex conjugation in anti-unitary symmetries. Based on that, we show how time reversal can be applied locally and also describe time reversal symmetry twists which act as gauge fluxes through nontrivial loops in the system. As with unitary symmetries, gauging time reversal provides useful access to the physical properties of the system. We show how topological invariants of certain time reversal symmetric topological phases in $D=1,2$ are readily extracted using these ideas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا