No Arabic abstract
We report on a novel structural Superfluid-Mott Insulator (SF-MI) quantum phase transition for an interacting one-dimensional Bose gas within permeable multi-rod lattices, where the rod lengths are varied from zero to the lattice period length. We use the ab-initio diffusion Monte Carlo method to calculate the static structure factor, the insulation gap, and the Luttinger parameter, which we use to determine if the gas is a superfluid or a Mott insulator. For the Bose gas within a square Kronig-Penney (KP) potential, where barrier and well widths are equal, the SF-MI coexistence curve shows the same qualitative and quantitative behavior as that of a typical optical lattice with equal periodicity but slightly larger height. When we vary the width of the barriers from zero to the length of the potential period, keeping the height of the KP barriers, we observe a new way to induce the SF-MI phase transition. Our results are of significant interest, given the recent progress on the realization of optical lattices with a subwavelength structure that would facilitate their experimental observation.
We study the thermodynamics near the generic (density-driven) superfluid--Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy the physics is controlled by the Gaussian fixed point and becomes universal. Thermodynamic quantities can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class while the microscopic physics enters only {it via} two nonuniversal parameters, namely the effective mass $m^*$ and the scattering length $a^*$ of the elementary excitations at the quantum critical point between the superfluid and Mott-insulating phase. A notable exception is the condensate density in the superfluid phase which is proportional to the quasi-particle weight $Zqp$ of the elementary excitations. The universal regime is defined by $m^*a^*{}^2 Tll 1$ and $m^*a^*{}^2|deltamu|ll 1$, or equivalently $|bar n-bar n_c|a^*{}^3ll 1$, where $deltamu=mu-mu_c$ is the chemical potential shift from the quantum critical point $(mu=mu_c,T=0)$ and $bar n-bar n_c$ the doping with respect to the commensurate density $bar n_c$ of the T=0 Mott insulator. We compute $Zqp$, $m^*$ and $a^*$ and find that they vary strongly with both the ratio $t/U$ between hopping amplitude and on-site repulsion and the value of the (commensurate) density $bar n_c$. Finally, we discuss the experimental observation of universality and the measurement of $Zqp$, $m^*$ and $a^*$ in a cold atomic gas in an optical lattice.
We study the superfluid-insulator transition in Bose-Hubbard models in one-, two-, and three-dimensional cubic lattices by means of a recently proposed variational wave function. In one dimension, the variational results agree with the expected Berezinskii-Kosterlitz-Thouless scenario of the interaction-driven Mott transition. In two and three dimensions, we find evidences that, across the transition,most of the spectral weight is concentrated at high energies, suggestive of pre-formed Mott-Hubbard side-bands. This result is compatible with the experimental data by Stoferle et al. [Phys. Rev. Lett. 92, 130403 (2004)].
We study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase transition with a lattice ramping routine expected to be locally adiabatic, we observe a global mass redistribution which requires a very long time to equilibrate, more than 100 times longer than the microscopic time scales for on-site interaction and tunneling. When the sample enters the Mott insulator regime, mass transport significantly slows down. By employing fast recombination pulses to analyze the occupancy distribution, we observe similarly slow-evolving dynamics, and a lower effective temperature at the center of the sample.
The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number $z$. We test this scaling directly by comparing coherence properties of $^{87}$Rb gases that are driven across the superfluid to Mott insulator transition within optical lattices of either the kagome ($z=4$) or the triangular ($z=6$) geometries. The coherent fraction measured for atoms in the kagome lattice is lower than for those in a triangular lattice with the same interaction and tunneling energies. A comparison of measurements from both lattices agrees quantitatively with the scaling prediction. We also study the response of the gas to a change in lattice geometry, and observe the dynamics as a strongly interacting kagome-lattice gas is suddenly hole-doped by introducing the additional sites of the triangular lattice.
We present a universal theory for the critical behavior of an impurity at the two-dimensional superfluid-Mott insulator transition. Our analysis is motivated by a numerical study of the Bose-Hubbard model with an impurity site by Huang et al. (Phys. Rev. B 94, 220502 (2016)), who found an impurity phase transition as a function of the trapping potential. The bulk theory is described by the $O(2)$ symmetric Wilson-Fisher conformal field theory, and we model the impurity by a localized spin-1/2 degree of freedom. We also consider a generalized model by considering an $O(N)$ symmetric bulk theory coupled to a spin-$S$ degree of freedom. We study this field theory using the $epsilon = 3 - d$ expansion, where the impurity-bulk interaction flows to an infrared stable fixed point at the critical trapping potential. We determine the scaling dimensions of the impurity degree of freedom and the associated critical exponents near the critical point. We also determine the universal contribution of the impurity to the finite temperature compressibility of the system at criticality. Our results are compared with recent numerical simulations.