Do you want to publish a course? Click here

Hermitian operators and isometries on symmetric operator spaces

100   0   0.0 ( 0 )
 Added by Jinghao Huang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $mathcal{M}$ be an atomless semifinite von Neumann algebra (or an atomic von Neumann algebra with all atoms having the same trace) acting on a (not necessarily separable) Hilbert space $H$ equipped with a semifinite faithful normal trace $tau$. Let $E(mathcal{M},tau) $ be a symmetric operator space affiliated with $ mathcal{M} $, whose norm is order continuous and is not proportional to the Hilbertian norm $left|cdotright|_2$ on $L_2(mathcal{M},tau)$. We obtain general description of all bounded hermitian operators on $E(mathcal{M},tau)$. This is the first time that the description of hermitian operators on asymmetric operator space (even for a noncommutative $L_p$-space) is obtained in the setting of general (non-hyperfinite) von Neumann algebras. As an application, we resolve a long-standing open problem concerning the description of isometries raised in the 1980s, which generalizes and unifies numerous earlier results.



rate research

Read More

Based on the characterization of surjective $L^p$-isometries of unitary groups in finite factors, we describe all surjective $L^p$-isometries between Grassmann spaces of projections with the same trace value in semifinite factors.
80 - Marius Junge , Quanhua Xu 2021
Let $mathcal{M}$ be a semifinite von Neumann algebra. We equip the associated noncommutative $L_p$-spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for $1<p<infty$ let $$L_{p,p}(mathcal{M})=big(L_{infty}(mathcal{M}),,L_{1}(mathcal{M})big)_{frac1p,,p}$$ be equipped with the operator space structure via real interpolation as defined by the second named author ({em J. Funct. Anal}. 139 (1996), 500--539). We show that $L_{p,p}(mathcal{M})=L_{p}(mathcal{M})$ completely isomorphically if and only if $mathcal{M}$ is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author. We also show that for $1<p<infty$ and $1le qleinfty$ with $p eq q$ $$big(L_{infty}(mathcal{M};ell_q),,L_{1}(mathcal{M};ell_q)big)_{frac1p,,p}=L_p(mathcal{M}; ell_q)$$ with equivalent norms, i.e., at the Banach space level if and only if $mathcal{M}$ is isomorphic, as a Banach space, to a commutative von Neumann algebra. Our third result concerns the following inequality: $$ big|big(sum_ix_i^qbig)^{frac1q}big|_{L_p(mathcal{M})}lebig|big(sum_ix_i^rbig)^{frac1r}big|_{L_p(mathcal{M})} $$ for any finite sequence $(x_i)subset L_p^+(mathcal{M})$, where $0<r<q<infty$ and $0<pleinfty$. If $mathcal{M}$ is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if $pge r$.
In this article, we give an abstract characterization of the ``identity of an operator space $V$ by looking at a quantity $n_{cb}(V,u)$ which is defined in analogue to a well-known quantity in Banach space theory. More precisely, we show that there exists a complete isometry from $V$ to some $mathcal{L}(H)$ sending $u$ to ${rm id}_H$ if and only if $n_{cb}(V,u) =1$. We will use it to give an abstract characterization of operator systems. Moreover, we will show that if $V$ is a unital operator space and $W$ is a proper complete $M$-ideal, then $V/W$ is also a unital operator space. As a consequece, the quotient of an operator system by a proper complete $M$-ideal is again an operator system. In the appendix, we will also give an abstract characterisation of ``non-unital operator systems using an idea arose from the definition of $n_{cb}(V,u)$.
183 - Victor Kaftal 2007
Frames on Hilbert C*-modules have been defined for unital C*-algebras by Frank and Larson and operator valued frames on a Hilbert space have been studied in arXiv.0707.3272v1.[math.FA]. Goal of the present paper is to introduce operator valued frames on a Hilbert C*-module for a sigma-unital C*-algebra. Theorem 1.4 reformulates the definition given by Frank and Larson in terms of a series of rank-one operators converging in the strict topology. Theorem 2.2. shows that the frame transform and the frame projection of an operator valued frame are limits in the strict topology of a series of elements in the multiplier algebra and hence belong to it. Theorem 3.3 shows that two operator valued frames are right similar if and only if they share the same frame projection. Theorem 3.4 establishes a one to one correspondence between Murray-von Neumann equivalence classes of projections in the multiplier algebra and right similarity equivalence classes of operator valued frames and provides a parametrization of all Parseval operator-valued frames on a given Hilbert C*-module. Left similarity is then defined and Proposition 3.9 establishes when two left unitarily equivalent frames are also right unitarily equivalent.
165 - Vern Paulsen , Ivan Todorov , 2009
Given an Archimedean order unit space (V,V^+,e), we construct a minimal operator system OMIN(V) and a maximal operator system OMAX(V), which are the analogues of the minimal and maximal operator spaces of a normed space. We develop some of the key properties of these operator systems and make some progress on characterizing when an operator system S is completely boundedly isomorphic to either OMIN(S) or to OMAX(S). We then apply these concepts to the study of entanglement breaking maps. We prove that for matrix algebras a linear map is completely positive from OMIN(M_n) to OMAX(M_m) if and only if it is entanglement breaking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا