Do you want to publish a course? Click here

Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks

111   0   0.0 ( 0 )
 Added by Jie Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper studies a federated learning (FL) system, where textit{multiple} FL services co-exist in a wireless network and share common wireless resources. It fills the void of wireless resource allocation for multiple simultaneous FL services in the existing literature. Our method designs a two-level resource allocation framework comprising emph{intra-service} resource allocation and emph{inter-service} resource allocation. The intra-service resource allocation problem aims to minimize the length of FL rounds by optimizing the bandwidth allocation among the clients of each FL service. Based on this, an inter-service resource allocation problem is further considered, which distributes bandwidth resources among multiple simultaneous FL services. We consider both cooperative and selfish providers of the FL services. For cooperative FL service providers, we design a distributed bandwidth allocation algorithm to optimize the overall performance of multiple FL services, meanwhile cater to the fairness among FL services and the privacy of clients. For selfish FL service providers, a new auction scheme is designed with the FL service owners as the bidders and the network provider as the auctioneer. The designed auction scheme strikes a balance between the overall FL performance and fairness. Our simulation results show that the proposed algorithms outperform other benchmarks under various network conditions.



rate research

Read More

We consider optimal resource allocation problems under asynchronous wireless network setting. Without explicit model knowledge, we design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs). Depending on the localized aggregated information structure on each network node, the method can be learned globally and asynchronously while implemented locally. We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method. We also propose a permutation invariance property which indicates the transferability of the trained Agg-GNN. We finally verify our strategy by numerical simulations compared with baseline methods.
Federated Learning is a new learning scheme for collaborative training a shared prediction model while keeping data locally on participating devices. In this paper, we study a new model of multiple federated learning services at the multi-access edge computing server. Accordingly, the sharing of CPU resources among learning services at each mobile device for the local training process and allocating communication resources among mobile devices for exchanging learning information must be considered. Furthermore, the convergence performance of different learning services depends on the hyper-learning rate parameter that needs to be precisely decided. Towards this end, we propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL, regarding the energy consumption of mobile devices and overall learning time. We design a centralized algorithm based on the block coordinate descent method and a decentralized JP-miADMM algorithm for solving the MS-FEDL problem. Different from the centralized approach, the decentralized approach requires many iterations to obtain but it allows each learning service to independently manage the local resource and learning process without revealing the learning service information. Our simulation results demonstrate the convergence performance of our proposed algorithms and the superior performance of our proposed algorithms compared to the heuristic strategy.
127 - Jun Li , Xiaoman Shen , Lei Chen 2019
Bandwidth slicing is introduced to support federated learning in edge computing to assure low communication delay for training traffic. Results reveal that bandwidth slicing significantly improves training efficiency while achieving good learning accuracy.
A novel intelligent bandwidth allocation scheme in NG-EPON using reinforcement learning is proposed and demonstrated for latency management. We verify the capability of the proposed scheme under both fixed and dynamic traffic loads scenarios to achieve <1ms average latency. The RL agent demonstrates an efficient intelligent mechanism to manage the latency, which provides a promising IBA solution for the next-generation access network.
Edge machine learning involves the development of learning algorithms at the network edge to leverage massive distributed data and computation resources. Among others, the framework of federated edge learning (FEEL) is particularly promising for its data-privacy preservation. FEEL coordinates global model training at a server and local model training at edge devices over wireless links. In this work, we explore the new direction of energy-efficient radio resource management (RRM) for FEEL. To reduce devices energy consumption, we propose energy-efficient strategies for bandwidth allocation and scheduling. They adapt to devices channel states and computation capacities so as to reduce their sum energy consumption while warranting learning performance. In contrast with the traditional rate-maximization designs, the derived optimal policies allocate more bandwidth to those scheduled devices with weaker channels or poorer computation capacities, which are the bottlenecks of synchronized model updates in FEEL. On the other hand, the scheduling priority function derived in closed form gives preferences to devices with better channels and computation capacities. Substantial energy reduction contributed by the proposed strategies is demonstrated in learning experiments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا