First multidimensional, high precision measurements of semi-inclusive $pi^+$ beam single spin asymmetries from the proton over a wide range of kinematics


Abstract in English

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here the first multidimensional study of single $pi^+$ SIDIS data over a large kinematic range in $z$, $x_B$, $P_T$ and virtualities $Q^2$ ranging from 1 GeV$^2$ up to 7 GeV$^2$. In particular, the structure function ratio $F_{LU}^{sinphi}/F_{UU}$ has been determined, where $F_{LU}^{sinphi}$ is a twist-3 quantity that can reveal novel properties of quark-gluon correlations within the nucleon. The impact of the data on the evolving understanding of the underlying reaction mechanisms and their kinematic variation is explored using theoretical models for the different contributing transverse momentum dependent parton distribution functions.

Download