No Arabic abstract
High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here the first multidimensional study of single $pi^+$ SIDIS data over a large kinematic range in $z$, $x_B$, $P_T$ and virtualities $Q^2$ ranging from 1 GeV$^2$ up to 7 GeV$^2$. In particular, the structure function ratio $F_{LU}^{sinphi}/F_{UU}$ has been determined, where $F_{LU}^{sinphi}$ is a twist-3 quantity that can reveal novel properties of quark-gluon correlations within the nucleon. The impact of the data on the evolving understanding of the underlying reaction mechanisms and their kinematic variation is explored using theoretical models for the different contributing transverse momentum dependent parton distribution functions.
We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial $sin phi_h$ amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle $phi_h$ of the produced neutral pion. The dependence of this amplitude on Bjorken $x$ and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.
We have measured beam-spin asymmetries to extract the $sinphi$ moment $A_{LU}^{sinphi}$ from the hard exclusive $vec{e} p to e^prime n pi^+$ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center-of-mass. The $A_{LU}^{sinphi}$ moment has been measured up to 6.6 GeV$^{2}$ in $-t$, covering the kinematic regimes of Generalized Parton Distributions (GPD) and baryon-to-meson Transition Distribution Amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where the TDA framework is applicable, we found $A_{LU}^{sinphi}$ to be negative, while a sign change was observed near 90$^circ$ in the center-of-mass. The unique results presented in this paper will provide critical constraints to establish reaction mechanisms that can help to further develop the GPD and TDA frameworks.
A first measurement of the longitudinal beam spin asymmetry ALU in the semi-inclusive electroproduction of pairs of charged pions is reported. ALU is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.498 GeV electron beam on a liquid-hydrogen target, and reconstructing the scattered electron and the pion pair with the CLAS detector. One-dimensional projections of the sin(phiR) moments of ALU are extracted for the kinematic variables of interest in the valence quark region. The understanding of di-hadron production is essential for the interpretation of observables in single hadron production in semi-inclusive DIS, and pioneering measurements of single spin asymmetries in di-hadron production open a new avenue in studies of QCD dynamics.
A measurement of beam-helicity asymmetries for single-hadron production in deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV electrons and positrons off gaseous hydrogen and deuterium targets were collected by the HERMES experiment. The asymmetries are presented separately as a function of the Bjorken scaling variable, the hadron transverse momentum, and the fractional energy for charged pions and kaons as well as for protons and anti-protons. These asymmetries are also presented as a function of the three aforementioned kinematic variables simultaneously.
We report on a new measurement of the beam transverse single spin asymmetry in electron-proton elastic scattering, $A^{ep}_{perp}$, at five beam energies from 315.1 MeV to 1508.4 MeV and at a scattering angle of $30^{circ} < theta < 40^{circ}$. The covered $Q^2$ values are 0.032, 0.057, 0.082, 0.218, 0.613 (GeV/c)$^2$. The measurement clearly indicates significant inelastic contributions to the two-photon-exchange (TPE) amplitude in the low-$Q^2$ kinematic region. No theoretical calculation is able to reproduce our result. Comparison with a calculation based on unitarity, which only takes into account elastic and $mathrm{pi N}$ inelastic intermediate states, suggests that there are other inelastic intermediate states such as $mathrm{pi pi N}$, $mathrm{K Lambda}$ and $mathrm{eta N}$. Covering a wide energy range, our new high-precision data provide a benchmark to study those intermediate states.