No Arabic abstract
Motivation: Stochastic reaction networks are a widespread model to describe biological systems where the presence of noise is relevant, such as in cell regulatory processes. Unfortu-nately, in all but simplest models the resulting discrete state-space representation hinders analytical tractability and makes numerical simulations expensive. Reduction methods can lower complexity by computing model projections that preserve dynamics of interest to the user. Results: We present an exact lumping method for stochastic reaction networks with mass-action kinetics. It hinges on an equivalence relation between the species, resulting in a reduced network where the dynamics of each macro-species is stochastically equivalent to the sum of the original species in each equivalence class, for any choice of the initial state of the system. Furthermore, by an appropriate encoding of kinetic parameters as additional species, the method can establish equivalences that do not depend on specific values of the parameters. The method is supported by an efficient algorithm to compute the largest species equivalence, thus the maximal lumping. The effectiveness and scalability of our lumping technique, as well as the physical interpretability of resulting reductions, is demonstrated in several models of signaling pathways and epidemic processes on complex networks. Availability: The algorithms for species equivalence have been implemented in the software tool ERODE, freely available for download from https://www.erode.eu.
Motivation: Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables. Results: We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with nonlinear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction. Availability: An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE. Supplementary information: enclosed.
In the past few decades, the development of fluorescent technologies and microscopic techniques has greatly improved scientists ability to observe real-time single-cell activities. In this paper, we consider the filtering problem associate with these advanced technologies, i.e., how to estimate latent dynamic states of an intracellular multiscale stochastic reaction network from time-course measurements of fluorescent reporters. A good solution to this problem can further improve scientists ability to extract information about intracellular systems from time-course experiments. A straightforward approach to this filtering problem is to use a particle filter where particles are generated by simulation of the full model and weighted according to observations. However, the exact simulation of the full dynamic model usually takes an impractical amount of computational time and prevents this type of particle filters from being used for real-time applications, such as transcription regulation networks. Inspired by the recent development of hybrid approximations to multiscale chemical reaction networks, we approach the filtering problem in an alternative way. We first prove that accurate solutions to the filtering problem can be constructed by solving the filtering problem for a reduced model that represents the dynamics as a hybrid process. The model reduction is based on exploiting the time-scale separations in the original network and, therefore, can greatly reduce the computational effort required to simulate the dynamics. As a result, we are able to develop efficient particle filters to solve the filtering problem for the original model by applying particle filters to the reduced model. We illustrate the accuracy and the computational efficiency of our approach using several numerical examples.
The probability distribution describing the state of a Stochastic Reaction Network evolves according to the Chemical Master Equation (CME). It is common to estimated its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases these simulations can take an impractical amount of computational time. Therefore many methods have been developed that approximate the Stochastic Process underlying the Chemical Master Equation. Prominent strategies are Hybrid Models that regard the firing of some reaction channels as being continuous and applying the quasi-stationary assumption to approximate the dynamics of fast subnetworks. However as the dynamics of a Stochastic Reaction Network changes with time these approximations might have to be adapted during the simulation. We develop a method that approximates the solution of a CME by automatically partitioning the reaction dynamics into discrete/continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from Systems Biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time.
Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic approximations on the timescale of interest. One of the rigorous and popular approaches is the multiscale approximation method for continuous time Markov processes. In this approach, by scaling species abundances and reaction rates, a family of processes parameterized by a scaling parameter is defined. The limiting process of this family is then used to approximate the original process. However, we find that such approximations become inaccurate when combinations of species with disparate abundances either constitute conservation laws or form virtual slow auxiliary species. To obtain more accurate approximation in such cases, we propose here an appropriate modification of the original method.
Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate, using decision-making by a large population of quorum sensing bacteria, that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.