A Cloud connected NO2 and Ozone Sensor System for Personalized Pediatric Asthma Research and Management


Abstract in English

This paper presents a cloud-connected indoor air quality sensor system that can be deployed to patients homes to study personal microenvironmental exposure for asthma research and management. The system consists of multiple compact sensor units that can measure residential NO2, ozone, humidity, and temperature at one minute resolution and a cloud based informatic system that acquires, stores, and visualizes the microenvironmental data in real time. The sensor hardware can measure NO2 as low as 10 ppb and ozone at 15 ppb. The cloud informatic system is implemented using open-source software on Amazon Web Service for easy deployment and scalability. This system was successfully deployed to pediatric asthma patients homes in a pilot study. In this study, we discovered that some families can have short term NO2 exposure higher than EPAs one hour exposure limit (100 ppb), and NO2 micropollution episodes often arise from natural gas appliance usage such as gas stove burning during cooking. By combining the personalized air pollutant exposure measurements with the physiological responses from a patient diary and medical record, this system can enable novel asthma research and personalized asthma management.

Download