Do you want to publish a course? Click here

SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors

88   0   0.0 ( 0 )
 Added by Kai Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Efficient error-controlled lossy compressors are becoming critical to the success of todays large-scale scientific applications because of the ever-increasing volume of data produced by the applications. In the past decade, many lossless and lossy compressors have been developed with distinct design principles for different scientific datasets in largely diverse scientific domains. In order to support researchers and users assessing and comparing compressors in a fair and convenient way, we establish a standard compression assessment benchmark -- Scientific Data Reduction Benchmark (SDRBench). SDRBench contains a vast variety of real-world scientific datasets across different domains, summarizes several critical compression quality evaluation metrics, and integrates many state-of-the-art lossy and lossless compressors. We demonstrate evaluation results using SDRBench and summarize six valuable takeaways that are helpful to the in-depth understanding of lossy compressors.



rate research

Read More

Error-bounded lossy compression is a critical technique for significantly reducing scientific data volumes. With ever-emerging heterogeneous high-performance computing (HPC) architecture, GPU-accelerated error-bounded compressors (such as cuSZ+ and cuZFP) have been developed. However, they suffer from either low performance or low compression ratios. To this end, we propose cuSZ+ to target both high compression ratios and throughputs. We identify that data sparsity and data smoothness are key factors for high compression throughputs. Our key contributions in this work are fourfold: (1) We propose an efficient compression workflow to adaptively perform run-length encoding and/or variable-length encoding. (2) We derive Lorenzo reconstruction in decompression as multidimensional partial-sum computation and propose a fine-grained Lorenzo reconstruction algorithm for GPU architectures. (3) We carefully optimize each of cuSZ+ kernels by leveraging state-of-the-art CUDA parallel primitives. (4) We evaluate cuSZ+ using seven real-world HPC application datasets on V100 and A100 GPUs. Experiments show cuSZ+ improves the compression throughputs and ratios by up to 18.4X and 5.3X, respectively, over cuSZ on the tested datasets.
Data management is becoming increasingly important in dealing with the large amounts of data produced by large-scale scientific simulations and instruments. Existing multilevel compression algorithms offer a promising way to manage scientific data at scale, but may suffer from relatively low performance and reduction quality. In this paper, we propose MGARD+, a multilevel data reduction and refactoring framework drawing on previous multilevel methods, to achieve high-performance data decomposition and high-quality error-bounded lossy compression. Our contributions are four-fold: 1) We propose a level-wise coefficient quantization method, which uses different error tolerances to quantize the multilevel coefficients. 2) We propose an adaptive decomposition method which treats the multilevel decomposition as a preconditioner and terminates the decomposition process at an appropriate level. 3) We leverage a set of algorithmic optimization strategies to significantly improve the performance of multilevel decomposition/recomposition. 4) We evaluate our proposed method using four real-world scientific datasets and compare with several state-of-the-art lossy compressors. Experiments demonstrate that our optimizations improve the decomposition/recomposition performance of the existing multilevel method by up to 70X, and the proposed compression method can improve compression ratio by up to 2X compared with other state-of-the-art error-bounded lossy compressors under the same level of data distortion.
Network-distributed optimization has attracted significant attention in recent years due to its ever-increasing applications. However, the classic decentralized gradient descent (DGD) algorithm is communication-inefficient for large-scale and high-dimensional network-distributed optimization problems. To address this challenge, many compressed DGD-based algorithms have been proposed. However, most of the existing works have high complexity and assume compressors with bounded noise power. To overcome these limitations, in this paper, we propose a new differential-coded compressed DGD (DC-DGD) algorithm. The key features of DC-DGD include: i) DC-DGD works with general SNR-constrained compressors, relaxing the bounded noise power assumption; ii) The differential-coded design entails the same convergence rate as the original DGD algorithm; and iii) DC-DGD has the same low-complexity structure as the original DGD due to a {em self-noise-reduction effect}. Moreover, the above features inspire us to develop a hybrid compression scheme that offers a systematic mechanism to minimize the communication cost. Finally, we conduct extensive experiments to verify the efficacy of the proposed DC-DGD and hybrid compressor.
64 - Alex Withers 2018
The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: ideally, methods that can scale data volumes adaptively so as to enable negotiation of performance and fidelity tradeoffs in different situations. Multigrid-based hierarchical data representations hold promise as a solution to this problem, allowing for flexible conversion between different fidelities so that, for example, data can be created at high fidelity and then transferred or stored at lower fidelity via logically simple and mathematically sound operations. However, the effective use of such representations has been hindered until now by the relatively high costs of creating, accessing, reducing, and otherwise operating on such representations. We describe here highly optimized data refactoring kernels for GPU accelerators that enable efficient creation and manipulation of data in multigrid-based hierarchical forms. We demonstrate that our optimized design can achieve up to 264 TB/s aggregated data refactoring throughput -- 92% of theoretical peak -- on 1024 nodes of the Summit supercomputer. We showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا