Do you want to publish a course? Click here

Shear rheology of a dilute emulsion of ferrofluid droplets dispersed in a non-magnetizable carrier fluid under the influence of a uniform magnetic field

139   0   0.0 ( 0 )
 Added by Paolo Capobianchi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effect of a spatially uniform magnetic field on the shear rheology of a dilute emulsion of monodispersed ferrofluid droplets, immersed in a non-magnetizable immiscible fluid, is investigated using direct numerical simulations. The direction of the applied magnetic field is normal to the shear flow direction. The droplets extra stress tensor arising from the presence of interfacial forces of magnetic nature is modeled on the basis of the seminal work of G. K. Batchelor, J. Fluid Mech., 41.3 (1970) under the assumptions of a linearly magnetizable ferrofluid phase and negligible inertia. The results show that even relatively small magnetic fields can have significant consequences on the rheological properties of the emulsion due to the magnetic forces that contribute to deform and orient the droplets towards the direction of the applied magnetic vector. In particular, we have observed an increase of the effective (bulk) viscosity and a reversal of the sign of the two normal stress differences with respect to the case without magnetic field for those conditions where the magnetic force prevails over the shearing force. Comparisons between the results of our model with a direct integration of the viscous stress have provided an indication of its reliability to predict the effective viscosity of the suspension. Moreover, this latter quantity has been found to behave as a monotonic increasing function of the applied magnetic field for constant shearing flows (magneto-thickening behaviour), which allowed us to infer a simple constitutive equation describing the emulsion viscosity.



rate research

Read More

We study in this work a steady shearing laminar flow with null heat flux (usually called uniform shear flow) in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved by means of three different but complementary routes, two of them being theoretical (Grads moment method applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike in previous studies on granular sheared suspensions, we include in our Grads solution nonlinear terms in the stress tensor in the collisional moment associated with the momentum transfer. This theoretical enhancement allows us for the detection and evaluation of the normal stress differences in the plane normal to the laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments of the velocity distribution function. Comparison between our theoretical and numerical results shows in general a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the distribution function) and the velocity distribution of the kinetic model for quite strong inelasticity and not too large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of our analytical results that allows us to describe in detail the flow dynamics of the granular suspension with zero heat flux throughout the paper.
Considering a granular fluid of inelastic smooth hard spheres we discuss the conditions delineating the rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior. Developing a kinetic theory, valid at finite shear rates and densities around the glass transition density, we predict the viscosity and Bagnold coefficient at practically relevant values of the control parameters. The determination of full flow curves relating the shear stress $sigma$ to the shear rate $dotgamma$, and predictions of the yield stress complete our discussion of granular rheology derived from first principles.
Due to the potential impact on the diagnosis and treatment of various cardiovascular diseases, work on the rheology of blood has significantly expanded in the last decade, both experimentally and theoretically. Experimentally, blood has been confirmed to demonstrate a variety of non-Newtonian rheological characteristics, including pseudoplasticity, viscoelasticity, and thixotropy. New rheological experiments and the development of more controlled experimental protocols on more extensive, broadly physiologically characterized, human blood samples demonstrate the sensitivity of aspects of hemorheology to several physiological factors. For example, at high shear rates to the red blood cells elastically deformation, imparting viscoelasticity, while and at low shear rates, they form rouleaux structures that impart additional, thixotropic behavior. In addition to these advances in experimental methods and validated data sets, significant advances have also been made in both microscopic simulations and macroscopic, continuum, modeling, as well as novel, multiscale approaches. We outline and evaluate the most promising of these recent advances. Although we primarily focus on human blood rheology, we also discuss recent observations on variations across some animal species that provide some indication on evolutionary effects.
We investigate the sedimentation of initially packed paramagnetic particles in presence of a homogeneous external magnetic field, in a Hele-Shaw cell filled with water. Although the magnetic susceptibility of the particles is small and the particle-particle induced magnetic interactions are significantly smaller compared to the gravitational acceleration, we do observe a measurable reduction of the decompaction rate as the amplitude of the applied magnetic field is increased. While induced magnetic dipole-dipole interactions between particles can be either attracting or repulsive depending on the particles relative alignment, our observations reveal an effective overall enhancement of the cohesion of the initial pack of particles due to the induced interactions, very likely promoting internal chain forces in the initial pack of particles. The influence of the magnetic field on the particles once they disperse after being decompacted is on the other hand found to remain marginal.
177 - S. Wu , T. Solano , K. Shoele 2021
We investigate the effects of helical swimmer shape (i.e., helical pitch angle and tail thickness) on swimming dynamics in a constant viscosity viscoelastic (Boger) fluid via a combination of particle tracking velocimetry, particle image velocimetry and 3D simulations of the FENE-P model. The 3D printed helical swimmer is actuated in a magnetic field using a custom-built rotating Helmholtz coil. Our results indicate that increasing the swimmer tail thickness and pitch angle enhances the normalized swimming speed (i.e., ratio of swimming speed in the Boger fluid to that of the Newtonian fluid). Strikingly, unlike the Newtonian fluid, the viscoelastic flow around the swimmer is characterized by formation of a front-back flow asymmetry that is characterized by a strong negative wake downstream of the swimmer. Evidently, the strength of the negative wake is inversely proportional to the normalized swimming speed. Three-dimensional simulations of the swimmer with FENE-P model with conditions that match those of experiments, confirm formation of a similar front-back flow asymmetry around the swimmer. Finally, by developing an approximate force balance in the streamwise direction, we show that the contribution of polymer stresses in the interior region of the helix may provide a mechanism for swimming enhancement or diminution in the viscoelastic fluid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا