Do you want to publish a course? Click here

Quantum Tensor Network in Machine Learning: An Application to Tiny Object Classification

77   0   0.0 ( 0 )
 Added by Fanjie Kong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Tiny object classification problem exists in many machine learning applications like medical imaging or remote sensing, where the object of interest usually occupies a small region of the whole image. It is challenging to design an efficient machine learning model with respect to tiny object of interest. Current neural network structures are unable to deal with tiny object efficiently because they are mainly developed for images featured by large scale objects. However, in quantum physics, there is a great theoretical foundation guiding us to analyze the target function for image classification regarding to specific objects size ratio. In our work, we apply Tensor Networks to solve this arising tough machine learning problem. First, we summarize the previous work that connects quantum spin model to image classification and bring the theory into the scenario of tiny object classification. Second, we propose using 2D multi-scale entanglement renormalization ansatz (MERA) to classify tiny objects in image. In the end, our experimental results indicate that tensor network models are effective for tiny object classification problem and potentially will beat state-of-the-art. Our codes will be available online https://github.com/timqqt/MERA_Image_Classification.



rate research

Read More

An explainable machine learning method for point cloud classification, called the PointHop method, is proposed in this work. The PointHop method consists of two stages: 1) local-to-global attribute building through iterative one-hop information exchange, and 2) classification and ensembles. In the attribute building stage, we address the problem of unordered point cloud data using a space partitioning procedure and developing a robust descriptor that characterizes the relationship between a point and its one-hop neighbor in a PointHop unit. When we put multiple PointHop units in cascade, the attributes of a point will grow by taking its relationship with one-hop neighbor points into account iteratively. Furthermore, to control the rapid dimension growth of the attribute vector associated with a point, we use the Saab transform to reduce the attribute dimension in each PointHop unit. In the classification and ensemble stage, we feed the feature vector obtained from multiple PointHop units to a classifier. We explore ensemble methods to improve the classification performance furthermore. It is shown by experimental results that the PointHop method offers classification performance that is comparable with state-of-the-art methods while demanding much lower training complexity.
Extreme Learning Machine is a powerful classification method very competitive existing classification methods. It is extremely fast at training. Nevertheless, it cannot perform face verification tasks properly because face verification tasks require comparison of facial images of two individuals at the same time and decide whether the two faces identify the same person. The structure of Extreme Leaning Machine was not designed to feed two input data streams simultaneously, thus, in 2-input scenarios Extreme Learning Machine methods are normally applied using concatenated inputs. However, this setup consumes two times more computational resources and it is not optimized for recognition tasks where learning a separable distance metric is critical. For these reasons, we propose and develop a Siamese Extreme Learning Machine (SELM). SELM was designed to be fed with two data streams in parallel simultaneously. It utilizes a dual-stream Siamese condition in the extra Siamese layer to transform the data before passing it along to the hidden layer. Moreover, we propose a Gender-Ethnicity-Dependent triplet feature exclusively trained on a variety of specific demographic groups. This feature enables learning and extracting of useful facial features of each group. Experiments were conducted to evaluate and compare the performances of SELM, Extreme Learning Machine, and DCNN. The experimental results showed that the proposed feature was able to perform correct classification at 97.87% accuracy and 99.45% AUC. They also showed that using SELM in conjunction with the proposed feature provided 98.31% accuracy and 99.72% AUC. They outperformed the well-known DCNN and Extreme Leaning Machine methods by a wide margin.
We describe a quantum-assisted machine learning (QAML) method in which multivariate data is encoded into quantum states in a Hilbert space whose dimension is exponentially large in the length of the data vector. Learning in this space occurs through applying a low-depth quantum circuit with a tree tensor network (TTN) topology, which acts as an unsupervised feature extractor to identify the most relevant quantum states in a data-driven fashion. This unsupervised feature extractor then feeds a supervised linear classifier and encodes the output in a small-dimensional quantum register. In contrast to previous work on emph{quantum-inspired} TTN classifiers, in which the embedding map and class decision weights did not map the data to well-defined quantum states, we present an approach that can be implemented on gate-based quantum computing devices. In particular, we identify an embedding map with accuracy similar to exponential machines (Novikov emph{et al.}, arXiv:1605.03795), but which produces valid quantum states from classical data vectors, and utilize manifold-based gradient optimization schemes to produce isometric operations mapping quantum states to a register of qubits defining a class decision. We detail methods for efficiently obtaining one- and two-point correlation functions of the decision boundary vectors of the quantum model, which can be used for model interpretability, as well as methods for obtaining classifications from partial data vectors. Further, we show that the use of isometric tensors can significantly aid in the human interpretability of the correlation functions extracted from the decision weights, and may produce models that are less susceptible to adversarial perturbations. We demonstrate our methodologies in applications utilizing the MNIST handwritten digit dataset and a multivariate timeseries dataset of human activity recognition.
330 - Ao Chen , Chen Li , Haoyuan Chen 2021
Image classification has achieved unprecedented advance with the the rapid development of deep learning. However, the classification of tiny object images is still not well investigated. In this paper, we first briefly review the development of Convolutional Neural Network and Visual Transformer in deep learning, and introduce the sources and development of conventional noises and adversarial attacks. Then we use various models of Convolutional Neural Network and Visual Transformer to conduct a series of experiments on the image dataset of tiny objects (sperms and impurities), and compare various evaluation metrics in the experimental results to obtain a model with stable performance. Finally, we discuss the problems in the classification of tiny objects and make a prospect for the classification of tiny objects in the future.
An increasing number of applications in the computer vision domain, specially, in medical imaging and remote sensing, are challenging when the goal is to classify very large images with tiny objects. More specifically, these type of classification tasks face two key challenges: $i$) the size of the input image in the target dataset is usually in the order of megapixels, however, existing deep architectures do not easily operate on such big images due to memory constraints, consequently, we seek a memory-efficient method to process these images; and $ii$) only a small fraction of the input images are informative of the label of interest, resulting in low region of interest (ROI) to image ratio. However, most of the current convolutional neural networks (CNNs) are designed for image classification datasets that have relatively large ROIs and small image size (sub-megapixel). Existing approaches have addressed these two challenges in isolation. We present an end-to-end CNN model termed Zoom-In network that leverages hierarchical attention sampling for classification of large images with tiny objects using a single GPU. We evaluate our method on two large-image datasets and one gigapixel dataset. Experimental results show that our model achieves higher accuracy than existing methods while requiring less computing resources.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا