No Arabic abstract
The HERMES-TP/SP mission, based on a nanosatellite constellation, has very stringent constraints of sensitivity and compactness, and requires an innovative wide energy range instrument. The instrument technology is based on the siswich concept, in which custom-designed, low-noise Silicon Drift Detectors are used to simultaneously detect soft X-rays and to readout the optical light produced by the interaction of higher energy photons in GAGG:Ce scintillators. To preserve the inherent excellent spectroscopic performances of SDDs, advanced readout electronics is necessary. In this paper, the HERMES detector architecture concept will be described in detail, as well as the specifically developed front-end ASICs (LYRA-FE and LYRA-BE) and integration solutions. The experimental performance of the integrated system composed by scintillator+SDD+LYRA ASIC will be discussed, demonstrating that the requirements of a wide energy range sensitivity, from 2 keV up to 2 MeV, are met in a compact instrument.
The High Energy Modular Ensemble of Satellites (HERMES) project is aimed to realize a modular X/gamma-ray monitor for transient events, to be placed on-board of a CubeSat bus. This expandable platform will achieve a significant impact on Gamma Ray Burst (GRB) science and on the detection of Gravitational Wave (GW) electromagnetic counterparts: the recent LIGO/VIRGO discoveries demonstrated that the high-energy transient sky is still a field of extreme interest. The very complex temporal variability of GRBs (up to the millisecond scale) combined with the spatial and temporal coincidence between GWs and their electromagnetic counterparts suggest that upcoming instruments require sub-ms time resolution combined with a transient localization accuracy lower than a degree. The current phase of the ongoing HERMES project is focused on the realization of a technological pathfinder with a small network (3 units) of nano-satellites to be launched in mid 2020. We will show the potential and prospects for short and medium-term development of the project, demonstrating the disrupting possibilities for scientific investigations provided by the innovative concept of a new modular astronomy with nano-satellites (e.g. low developing costs, very short realization time). Finally, we will illustrate the characteristics of the HERMES Technological Pathfinder project, demonstrating how the scientific goals discussed are actually already reachable with the first nano-satellites of this constellation. The detector architecture will be described in detail, showing that the new generation of scintillators (e.g. GAGG:Ce) coupled with very performing Silicon Drift Detectors (SDD) and low noise Front-End-Electronics (FEE) are able to extend down to few keV the sensitivity band of the detector. The technical solutions for FEE, Back-End-Electronics (BEE) and Data Handling will be also described.
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we will illustrate the HERMES payload design, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive X-ray and gamma-ray detector to be accommodated in a CubeSat 1U volume together with its complete control electronics and data handling system.
Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., which are expected to be directly detected for the first time in late 2010s by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.
GRM (Gamma-Ray Monitor) is the high energy detector on-board the future Chinese-French satellite SVOM (Space-based multi-band astronomical Variable Object Monitor) which is dedicated to Gamma-Ray Burst (GRB) studies. This paper presents the investigation of the on-board counting rate trigger algorithms of GRM. The trigger threshold and trigger efficiency based on the given GRB sample are calculated with the algorithms. The trigger characteristics of GRM and ECLAIRs are also analyzed. In addition, the impact of solar flares on GRM is estimated, and the method to distinguish solar flares from GRBs is investigated.
We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a Lobster Eye design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.