Noise is the greatest obstacle in quantum metrology that limits it achievable precision and sensitivity. There are many techniques to mitigate the effect of noise, but this can never be done completely. One commonly proposed technique is to repeatedly apply quantum error correction. Unfortunately, the required repetition frequency needed to recover the Heisenberg limit is unachievable with the existing quantum technologies. In this article we explore the discrete application of quantum error correction with current technological limitations in mind. We establish that quantum error correction can be beneficial and highlight the factors which need to be improved so one can reliably reach the Heisenberg limit level precision.
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in the asymptotic limit of large $t$ is restricted to a constant factor. However, situations arise where the constant factor improvement could be significant, yet no effective quantum strategies are known. Here we propose an optimal approximate quantum error correction (AQEC) strategy asymptotically saturating the precision lower bound in the most general adaptive parameter estimation scheme where arbitrary and frequent quantum controls are allowed. We also provide an efficient numerical algorithm finding the optimal code. Finally, we consider highly-biased noise and show that using the optimal AQEC strategy, strong noises are fully corrected, while the estimation precision depends only on the strength of weak noises in the limiting case.
The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noise are actively being explored. Here we experimentally protect a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the timescales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multi-qubit systems provide for quantum sensing and offers an important complement to quantum control techniques. In particular, our work opens the door for detecting minute signals in the presence of high frequency noise, where standard protocols reach their limits.
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detection. We show that using quantum error-correction codes a small signal can be measured with Heisenberg limited uncertainty even in the presence of noise. We analyze the limitations to the measurement of signals of interest and discuss two simple examples. The possibility of long coherence times, combined with their Heisenberg limited sensitivity to certain signals, pose quantum error-correction codes as a promising detection scheme.
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.
We derive a necessary and sufficient condition for the possibility of achieving the Heisenberg scaling in general adaptive multi-parameter estimation schemes in presence of Markovian noise. In situations where the Heisenberg scaling is achievable, we provide a semidefinite program to identify the optimal quantum error correcting (QEC) protocol that yields the best estimation precision. We overcome the technical challenges associated with potential incompatibility of the measurement optimally extracting information on different parameters by utilizing the Holevo Cramer-Rao (HCR) bound for pure states. We provide examples of significant advantages offered by our joint-QEC protocols, that sense all the parameters utilizing a single error-corrected subspace, over separate-QEC protocols where each parameter is effectively sensed in a separate subspace.