No Arabic abstract
Acoustic holograms have promising applications in sound-field reconstruction, particle manipulation, ultrasonic haptics and therapy. This paper reports on the theoretical, numerical, and experimental investigation of multiplexed acoustic holograms at both audio and ultrasonic frequencies via a rationally designed transmission-type acoustic metamaterial. The proposed meta-hologram is composed of two Fabry-Perot resonant channels per unit cell, which enables the simultaneous modulation of the transmitted amplitude and phase at two desired frequencies. In contrast to conventional acoustic metamaterial-based holograms, the design strategy proposed here, provides a new degree of freedom (frequency) that can actively tailor holograms that are otherwise completely passive and hence significantly enhances the information encoded in acoustic metamaterials. To demonstrate the multiplexed acoustic metamaterial, we first show the projection of two different high-quality meta-holograms at 14 kHz and 17 kHz, with the patterns of the letters, N and S. We then demonstrate two-channel ultrasound focusing and annular beams generation for the incident ultrasonic frequencies of 35 kHz and 42.5 kHz. These multiplexed acoustic meta-holograms offer a technical advance to tackle the rising challenges in the fields of acoustic metamaterials, architectural acoustics, and medical ultrasound.
We present the design, architecture and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.
Double-negative acoustic metamaterials (AMMs) offer the promising ability of superlensing for applications in ultrasonography, biomedical sensing and nondestructive evaluation. Here, under the simultaneous increasing or non-increasing mechanisms, we develop a unified topology optimization framework considering the different microstructure symmetries, minimal structural feature sizes and dispersion extents of effective parameters. Then we apply the optimization framework to furnish the heuristic resonance-cavity-based and space-coiling metamaterials with broadband double negativity. Meanwhile, we demonstrate the essences of double negativity derived from the novel artificial multipolar LC and Mie resonances which can be induced by controlling mechanisms in optimization. Furthermore, abundant numerical simulations validate the double negativity, negative refraction, enhancements of evanescent waves and subwavelengh imaging for the optimized AMMs. Finally, we experimentally show the desired broadband subwavelengh imaging using the 3D-printed optimized space-coiling metamaterial. The present methodology and broadband metamaterials provide the ideal strategy of constructing AMMs for subwavelengh imaging technology.
In this paper, we design, fabricate and experimentally characterize a broadband acoustic right-angle bend device in air. Perforated panels with various hole-sizes are used to construct the bend structure. Both the simulated and the experimental results verify that acoustic beam can be rotated effectively through the acoustic bend in a wide frequency range. This model may have potential applications in some areas such as sound absorption and acoustic detection in pipeline.
Metasurfaces based on geometric phase acquired from the conversion of the optical spin states provide a robust control over the wavefront of light, and have been widely employed for construction of various types of functional metasurface devices. However, this powerful approach cannot be readily transferred to the manipulation of acoustic waves because acoustic waves do not possess the spin degree of freedom. Here, we propose the concept of acoustic geometric-phase meta-array by leveraging the conversion of orbital angular momentum of acoustic waves, where well-defined geometric-phases can be attained through versatile topological charge conversion processes. This work extends the concept of geometric-phase metasurface from optics to acoustics, and provides a new route for acoustic wave control.
We present a gradient-based optimization strategy to design broadband grating couplers. Using this method, we are able to reach, and often surpass, a user-specified target bandwidth during optimization. The designs produced for 220 nm silicon-on-insulator are capable of achieving 3 dB bandwidths exceeding 100 nm while maintaining central coupling efficiencies ranging from -3.0 dB to -5.4 dB, depending on partial-etch fraction. We fabricate a subset of these structures and experimentally demonstrate gratings with 3 dB bandwidths exceeding 120 nm. This inverse design approach provides a flexible design paradigm, allowing for the creation of broadband grating couplers without requiring constraints on grating geometry.