The set of all cancellable elements of the lattice of semigroup varieties has recently been shown to be countably infinite. But the description of all cancellable elements of the lattice $mathbb{MON}$ of monoid varieties remains unknown. This problem is addressed in the present article. The first example of a monoid variety with modular but non-distributive subvariety lattice is first exhibited. Then a necessary condition of the modularity of an element in $mathbb{MON}$ is established. These results play a crucial role in the complete description of all cancellable elements of the lattice $mathbb{MON}$. It turns out that there are precisely five such elements.
We survey results devoted to the lattice of varieties of monoids. Along with known results, some unpublished results are given with proofs. A number of open questions and problems are also formulated.
The 6-element Brandt monoid $B_2^1$ admits a unique addition under which it becomes an additively idempotent semiring. We show that this addition is a term operation of $B_2^1$ as an inverse semigroup. As a consequence, we exhibit an easy proof that the semiring identities of $B_2^1$ are not finitely based.
The groups G_{k,1} of Richard Thompson and Graham Higman can be generalized in a natural way to monoids, that we call M_{k,1}, and to inverse monoids, called Inv_{k,1}; this is done by simply generalizing bijections to partial functions or partial injective functions. The monoids M_{k,1} have connections with circuit complexity (studied in another paper). Here we prove that M_{k,1} and Inv_{k,1} are congruence-simple for all k. Their Green relations J and D are characterized: M_{k,1} and Inv_{k,1} are J-0-simple, and they have k-1 non-zero D-classes. They are submonoids of the multiplicative part of the Cuntz algebra O_k. They are finitely generated, and their word problem over any finite generating set is in P. Their word problem is coNP-complete over certain infinite generating sets. Changes in this version: Section 4 has been thoroughly revised, and errors have been corrected; however, the main results of Section 4 do not change. Sections 1, 2, and 3 are unchanged, except for the proof of Theorem 2.3, which was incomplete; a complete proof was published in the Appendix of reference [6], and is also given here.
We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties in any characteristic, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop for monoid schemes many notions from classical algebraic geometry, such as separated and proper maps.