No Arabic abstract
Exoplanet detection in the past decade by efforts including NASAs Kepler and TESS missions has discovered many worlds that differ substantially from planets in our own Solar system, including more than 400 exoplanets orbiting binary or multi-star systems. This not only broadens our understanding of the diversity of exoplanets, but also promotes our study of exoplanets in the complex binary and multi-star systems and provides motivation to explore their habitability. In this study, we analyze orbital stability of exoplanets in non-coplanar circumbinary systems using a numerical simulation method, with which a large number of circumbinary planet samples are generated in order to quantify the effects of various orbital parameters on orbital stability. We also train a machine learning model that can quickly determine the stability of the circumbinary planetary systems. Our results indicate that larger inclinations of the planet tend to increase the stability of its orbit, but change in the planets mass range between Earth and Jupiter has little effect on the stability of the system. In addition, we find that Deep Neural Networks (DNNs) have higher accuracy and precision than other machine learning algorithms.
The Kepler mission has detected a number of transiting circumbinary planets (CBPs). Although currently not detected, exomoons could be orbiting some of these CBPs, and they might be suitable for harboring life. A necessary condition for the existence of such exomoons is their long-term dynamical stability. Here, we investigate the stability of exomoons around the Kepler CBPs using numerical $N$-body integrations. We determine regions of stability and obtain stability maps in the (a_m,i_pm) plane, where a_m is the initial exolunar semimajor axis with respect to the CBP, and i_pm is the initial inclination of the orbit of the exomoon around the planet with respect to the orbit of the planet around the stellar binary. Ignoring any dependence on i_pm, for most Kepler CBPs the stability regions are well described by the location of the 1:1 mean motion commensurability of the binary orbit with the orbit of the moon around the CBP. This is related to a destabilizing effect of the binary compared to the case if the binary were replaced by a single body, and which is borne out by corresponding 3-body integrations. For high inclinations, the evolution is dominated by Lidov-Kozai oscillations, which can bring moons in dynamically stable orbits to close proximity within the CBP, triggering strong interactions such as tidal evolution, tidal disruption, or direct collisions. This suggests that there is a dearth of highly-inclined exomoons around the Kepler CBPs, whereas coplanar exomoons are dynamically allowed.
We present here the first observationally based determination of the rate of occurrence of circumbinary planets. This is derived from the publicly available Kepler data, using an automated search algorithm and debiasing process to produce occurrence rates implied by the seven systems already known. These rates depend critically on the planetary inclination distribution: if circumbinary planets are preferentially coplanar with their host binaries, as has been suggested, then the rate of occurrence of planets with $R_p>6R_oplus$ orbiting with $P_p<300$ d is $10.0 ^{+18}_{-6.5}$% (95% confidence limits), higher than but consistent with single star rates. If on the other hand the underlying planetary inclination distribution is isotropic, then this occurrence rate rises dramatically, to give a lower limit of 47%. This implies that formation and subsequent dynamical evolution in circumbinary disks must either lead to largely coplanar planets, or proceed with significantly greater ease than in circumstellar disks. As a result of this investigation we also show that giant planets (${>}10R_oplus$) are significantly less common in circumbinary orbits than their smaller siblings, and confirm that the proposed shortfall of circumbinary planets orbiting the shorter period binaries in the Kepler sample is a real effect.
Over 30% of the ~4000 known exoplanets to date have been discovered using validation, where the statistical likelihood of a transit arising from a false positive (FP), non-planetary scenario is calculated. For the large majority of these validated planets calculations were performed using the vespa algorithm (Morton et al. 2016). Regardless of the strengths and weaknesses of vespa, it is highly desirable for the catalogue of known planets not to be dependent on a single method. We demonstrate the use of machine learning algorithms, specifically a gaussian process classifier (GPC) reinforced by other models, to perform probabilistic planet validation incorporating prior probabilities for possible FP scenarios. The GPC can attain a mean log-loss per sample of 0.54 when separating confirmed planets from FPs in the Kepler threshold crossing event (TCE) catalogue. Our models can validate thousands of unseen candidates in seconds once applicable vetting metrics are calculated, and can be adapted to work with the active TESS mission, where the large number of observed targets necessitates the use of automated algorithms. We discuss the limitations and caveats of this methodology, and after accounting for possible failure modes newly validate 50 Kepler candidates as planets, sanity checking the validations by confirming them with vespa using up to date stellar information. Concerning discrepancies with vespa arise for many other candidates, which typically resolve in favour of our models. Given such issues, we caution against using single-method planet validation with either method until the discrepancies are fully understood.
The Kepler mission has discovered about a dozen circumbinary planetary systems, all containing planets on ~ 1 AU orbits. We place bounds on the locations in the circumbinary protoplanetary disk, where these planets could have formed through collisional agglomeration starting from small (km-sized or less) planetesimals. We first present a model of secular planetesimal dynamics that accounts for the (1) perturbation due to the eccentric precessing binary, as well as the (2) gravity and (3) gas drag from a precessing eccentric disk. Their simultaneous action leads to rich dynamics, with (multiple) secular resonances emerging in the disk. We derive analytic results for size-dependent planetesimal eccentricity, and demonstrate the key role of the disk gravity for circumbinary dynamics. We then combine these results with a simple model for collisional outcomes and find that in systems like Kepler 16, planetesimal growth starting with 10-100 m planetesimals is possible outside a few AU. The exact location exterior to which this happens is sensitive to disk eccentricity, density and precession rate, as well as to the size of the first generation of planetesimals. Strong perturbations from the binary in the inner part of the disk, combined with a secular resonance at a few AU inhibit the growth of km-sized planetesimals within 2 - 4 AU of the binary. In situ planetesimal growth in the Kepler circumbinary systems is possible only starting from large (few-km-sized) bodies in a low-mass disk with surface density less than 500 g/cm^2 at 1 AU.
We use a one-dimensional (1-D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 M$_{E}$ and 5 M$_{E}$ around circumbinary stars of various spectral type combinations. Specifically, we consider binary systems with host spectral types F-F, F-G, F-K, F-M, G-G, G-K, G-M, K-K, K-M and M-M. Scaling the background N2 atmospheric pressure with the radius of the planet, we find that the inner edge of the HZ moves inwards towards the star for 5ME compared to 0.1ME planets for all spectral types. This is because the water-vapor column depth is smaller for larger planets and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. The outer edge of the HZ changes little due to competing effects of the albedo and greenhouse effect. While these results are broadly consistent with the trend of single star HZ results for different mass planets, there are significant differences between single star and binary star systems for the inner edge of the HZ. Interesting combinations of stellar pairs from our 1-D model results can be used to explore for in-depth climate studies with 3-D climate models. We identify a common HZ stellar flux domain for all circumbinary spectral types