No Arabic abstract
Deep Neural Networks (DNNs) have become the de-facto standard in computer vision, as well as in many other pattern recognition tasks. A key drawback of DNNs is that the training phase can be very computationally expensive. Organizations or individuals that cannot afford purchasing state-of-the-art hardware or tapping into cloud-hosted infrastructures may face a long waiting time before the training completes or might not be able to train a model at all. Investigating novel ways to reduce the training time could be a potential solution to alleviate this drawback, and thus enabling more rapid development of new algorithms and models. In this paper, we propose LightLayers, a method for reducing the number of trainable parameters in deep neural networks (DNN). The proposed LightLayers consists of LightDense andLightConv2D layer that are as efficient as regular Conv2D and Dense layers, but uses less parameters. We resort to Matrix Factorization to reduce the complexity of the DNN models resulting into lightweight DNNmodels that require less computational power, without much loss in the accuracy. We have tested LightLayers on MNIST, Fashion MNIST, CI-FAR 10, and CIFAR 100 datasets. Promising results are obtained for MNIST, Fashion MNIST, CIFAR-10 datasets whereas CIFAR 100 shows acceptable performance by using fewer parameters.
Deep convolutional neural networks have achieved remarkable success in computer vision. However, deep neural networks require large computing resources to achieve high performance. Although depthwise separable convolution can be an efficient module to approximate a standard convolution, it often leads to reduced representational power of networks. In this paper, under budget constraints such as computational cost (MAdds) and the parameter count, we propose a novel basic architectural block, ANTBlock. It boosts the representational power by modeling, in a high dimensional space, interdependency of channels between a depthwise convolution layer and a projection layer in the ANTBlocks. Our experiments show that ANTNet built by a sequence of ANTBlocks, consistently outperforms state-of-the-art low-cost mobile convolutional neural networks across multiple datasets. On CIFAR100, our model achieves 75.7% top-1 accuracy, which is 1.5% higher than MobileNetV2 with 8.3% fewer parameters and 19.6% less computational cost. On ImageNet, our model achieves 72.8% top-1 accuracy, which is 0.8% improvement, with 157.7ms (20% faster) on iPhone 5s over MobileNetV2.
Convolutional Architecture for Fast Feature Encoding (CAFFE) [11] is a software package for the training, classifying, and feature extraction of images. The UCF Sports Action dataset is a widely used machine learning dataset that has 200 videos taken in 720x480 resolution of 9 different sporting activities: diving, golf, swinging, kicking, lifting, horseback riding, running, skateboarding, swinging (various gymnastics), and walking. In this report we report on a caffe feature extraction pipeline of images taken from the videos of the UCF Sports Action dataset. A similar test was performed on overfeat, and results were inferior to caffe. This study is intended to explore the architecture and hyper parameters needed for effective static analysis of action in videos and classification over a variety of image datasets.
Convolutional neural networks (CNNs) have achieved state-of-the-art results on many visual recognition tasks. However, current CNN models still exhibit a poor ability to be invariant to spatial transformations of images. Intuitively, with sufficient layers and parameters, hierarchical combinations of convolution (matrix multiplication and non-linear activation) and pooling operations should be able to learn a robust mapping from transformed input images to transform-invariant representations. In this paper, we propose randomly transforming (rotation, scale, and translation) feature maps of CNNs during the training stage. This prevents complex dependencies of specific rotation, scale, and translation levels of training images in CNN models. Rather, each convolutional kernel learns to detect a feature that is generally helpful for producing the transform-invariant answer given the combinatorially large variety of transform levels of its input feature maps. In this way, we do not require any extra training supervision or modification to the optimization process and training images. We show that random transformation provides significant improvements of CNNs on many benchmark tasks, including small-scale image recognition, large-scale image recognition, and image retrieval. The code is available at https://github.com/jasonustc/caffe-multigpu/tree/TICNN.
The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7% on Cityscapes (street scene parsing), 71.3% on PASCAL-Person-Part (person-part segmentation), and 87.9% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.
We interpret convolutional networks as adaptive filters and combine them with so-called MuxOut layers to efficiently upscale low resolution images. We formalize this interpretation by deriving a linear and space-variant structure of a convolutional network when its activations are fixed. We introduce general purpose algorithms to analyze a network and show its overall filter effect for each given location. We use this analysis to evaluate two types of image upscalers: deterministic upscalers that target the recovery of details from original content; and second, a new generation of upscalers that can sample the distribution of upscale aliases (images that share the same downscale version) that look like real content.