The global dynamics of the two-species Lotka-Volterra competition patch model with asymmetric dispersal is classified under the assumptions of weak competition and the weighted digraph of the connection matrix is strongly connected and cycle-balanced. It is shown that in the long time, either the competition exclusion holds that one species becomes extinct, or the two species reach a coexistence equilibrium, and the outcome of the competition is determined by the strength of the inter-specific competition and the dispersal rates. Our main techniques in the proofs follow the theory of monotone dynamical system and a graph-theoretic approach based on the Tree-Cycle identity.