Do you want to publish a course? Click here

Spatially Resolved Stellar Spectroscopy of the Ultra-diffuse Galaxy Dragonfly 44. III. Evidence for an Unexpected Star-Formation History

86   0   0.0 ( 0 )
 Added by Alexa Villaume
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Keck Cosmic Web Imager integral-field unit spectrograph to: 1) measure the global stellar population parameters for the ultra-diffuse galaxy (UDG) Dragonfly 44 (DF44) to much higher precision than previously possible for any UDG, and 2) for the first time measure spatially-resolved stellar population parameters of a UDG. We find that DF44 falls below the mass--metallicity relation established by canonical dwarf galaxies both in and beyond the Local Group. We measure a flat radial age gradient ($m_{rm age} sim +0.01_{-0.08}^{+0.07}$ log Gyr kpc$^{-1}$) and a flat-to-positive metallicity gradient ($m_{rm [Fe/H]} sim +0.08_{-0.11}^{+0.11}$ dex kpc$^{-1}$), which are inconsistent with the gradients measured in similarly pressure-supported dwarf galaxies. We also measure a flat-to-negative [Mg/Fe] gradient ($m_{rm [Mg/Fe]} sim -0.18_{-0.17}^{+0.17}$ dex kpc$^{-1}$) such that the central $1.5$ kpc of DF44 has stellar population parameters comparable to metal-poor globular clusters. Overall, DF44 does not have internal properties similar to other dwarf galaxies and is inconsistent with it having been puffed up through a prolonged, bursty star-formation history, as suggested by some simulations. Rather, the evidence indicates that DF44 experienced an intense epoch of inside-out star formation and then quenched early and catastrophically, such that star-formation was cut off more quickly than in canonical dwarf galaxies.

rate research

Read More

102 - Akos Bogdan 2020
Due to the peculiar properties of ultra-diffuse galaxies (UDGs), understanding their origin presents a major challenge. Previous X-ray studies demonstrated that the bulk of UDGs lack substantial X-ray emission, implying that they reside in low-mass dark matter halos. This result, in concert with other observational and theoretical studies, pointed out that most UDGs belong to the class of dwarf galaxies. However, a subset of UDGs is believed to host a large population of globular clusters (GCs), which is indicative of massive dark matter halos. This, in turn, hints that some UDGs may be failed $L_{star}$ galaxies. In this work, I present Chandra and XMM-Newton observations of two archetypal UDGs, Dragonfly 44 and DF X1, and I constrain their dark matter halo mass based on the X-ray emission originating from hot gaseous emission and from the population of low-mass X-ray binaries residing in GCs. Both Dragonfly 44 and DF X1 remain undetected in X-rays. The upper limits on the X-ray emission exclude the possibility that these galaxies reside in massive ($M_{rm vir} gtrsim 5times10^{11} rm{M_{odot}}$) dark matter halos, suggesting that they are not failed $L_{star}$ galaxies. These results demonstrate that even these iconic UDGs resemble to dwarf galaxies with $M_{rm vir} lesssim 10^{11} rm{M_{odot}}$, implying that UDGs represent a single galaxy population.
Stationary Density Wave Theory predicts the existence of an age gradient across the spiral arms with a phase crossing at the co-rotation radius. Using star formation history (SFH) maps of 12 nearby spiral galaxies derived from textsc{LIGHTNING} citep{Eufracio:2017}, a spectral energy distribution (SED) fitting procedure, and by using textsc{Spirality} citep{Shield:2015} a textsc{MATLAB}-based code which plots synthetic spiral arms over textsc{FITS} images, we have found a gradual decrement in pitch angles with increasing age, thus providing us with evidence in favour of the Stationary Density Wave Theory. We have also used azimuthal offsets of spatially resolved stellar clusters in 3 LEGUS galaxies to observe age trends.
We report the discovery of two ultra-diffuse galaxies (UDGs) which show clear evidence for association with tidal material and interaction with a larger galaxy halo, found during a search of the Wide portion of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The two new UDGs, NGC2708-Dw1 and NGC5631-Dw1, are faint ($M_g$=$-$13.7 and $-$11.8 mag), extended ($r_h$=2.60 and 2.15 kpc) and have low central surface brightness ($mu(g,0)$=24.9 and 27.3 mag arcsec$^{-2}$), while the stellar stream associated with each has a surface brightness $mu(g)$$gtrsim$28.2 mag arcsec$^{-2}$. These observations provide evidence that the origin of some UDGs may connect to galaxy interactions, either by transforming normal dwarf galaxies by expanding them, or because UDGs can collapse out of tidal material (i.e. they are tidal dwarf galaxies). Further work is needed to understand the fraction of the UDG population `formed through galaxy interactions, and wide field searches for diffuse dwarf galaxies will provide further clues to the origin of these enigmatic stellar systems.
We present deep Hubble Space Telescope Advanced Camera for Surveys observations of the stellar populations in two fields lying at 20 and 23 kpc from the centre of M31 along the south-west semi-major axis. These data enable the construction of colour-magnitude diagrams reaching the oldest main-sequence turn-offs (~13 Gyr) which, when combined with another field at 25 kpc from our previous work, we use to derive the first precision constraints on the spatially-resolved star formation history of the M31 disc. The star formation rates exhibit temporal as well as field-to-field variations, but are generally always within a factor of two of their time average. There is no evidence of inside-out growth over the radial range probed. We find a median age of ~7.5 Gyr, indicating that roughly half of the stellar mass in the M31 outer disc was formed before z ~ 1. We also find that the age-metallicity relations (AMRs) are smoothly increasing from [Fe/H]~-0.4 to solar metallicity between 10 and 3 Gyr ago, contrary to the flat AMR of the Milky Way disc at a similar number of scale lengths. Our findings provide insight on the roles of stellar feedback and radial migration in the formation and evolution of large disc galaxies.
We have followed up two ultra-diffuse galaxies (UDGs), detected adjacent to stellar streams, with Hubble Space Telescope (HST) imaging and HI mapping with the Jansky Very Large Array (VLA) in order to investigate the possibility that they might have a tidal origin. With the HST F814W and F555W images we measure the globular cluster (GC) counts for NGC 2708-Dw1 and NGC 5631-Dw1 as $2^{+1}_{-1}$ and $5^{+1}_{-2}$, respectively. NGC 2708-Dw1 is undetected in HI down to a 3$sigma$ limit of $log (M_mathrm{HI}/mathrm{M_odot}) = 7.3$, and there is no apparent HI associated with the nearby stellar stream. There is a 2$sigma$ HI feature coincident with NGC 5631-Dw1. However, this emission is blended with a large gaseous tail emanating from NGC 5631 and is not necessarily associated with the UDG. The presence of any GCs and the lack of clear HI connections between the UDGs and their parent galaxies strongly disfavor a tidal dwarf galaxy origin, but cannot entirely rule it out. The GC counts are consistent with those of normal dwarf galaxies, and the most probable formation mechanism is one where these UDGs were born as normal dwarfs and were later tidally stripped and heated. We also identify an over-luminous ($M_mathrm{V} = -11.1$) GC candidate in NGC 2708-Dw1, which may be a nuclear star cluster transitioning to an ultra-compact dwarf as the surrounding dwarf galaxy gets stripped of stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا