No Arabic abstract
We present evidence that a magnetic flux rope was formed before a coronal mass ejection (CME) and its associated long-duration flare during a pair of preceding confined eruptions and associated impulsive flares in a compound event in NOAA Active Region 12371. Extreme-ultraviolet images and the extrapolated nonlinear force-free field show that the first two, impulsive flares, SOL2015-06-21T01:42, result from the confined eruption of highly sheared low-lying flux, presumably a seed flux rope. The eruption spawns a vertical current sheet, where magnetic reconnection creates flare ribbons and loops, a nonthermal microwave source, and a sigmoidal hot channel which can only be interpreted as a magnetic flux rope. Until the subsequent long-duration flare, SOL2015-06-21T02:36, the sigmoids elbows expand, while its center remains stationary, suggesting non-equilibrium but not yet instability. The flare reconnection during the confined eruptions acts like tether-cutting reconnection whose flux feeding of the rope leads to instability. The subsequent full eruption is seen as an accelerated rise of the entire hot channel, seamlessly evolving into the fast halo CME. Both the confined and ejective eruptions are consistent with the onset of the torus instability in the dipped decay index profile which results from the regions two-scale magnetic structure. We suggest that the formation or enhancement of a non-equilibrium but stable flux rope by confined eruptions is a generic process occurring prior to many CMEs.
Understanding the magnetic configuration of the source regions of coronal mass ejections (CMEs) is vital in order to determine the trigger and driver of these events. Observations of four CME productive active regions are presented here, which indicate that the pre-eruption magnetic configuration is that of a magnetic flux rope. The flux ropes are formed in the solar atmosphere by the process known as flux cancellation and are stable for several hours before the eruption. The observations also indicate that the magnetic structure that erupts is not the entire flux rope as initially formed, raising the question of whether the flux rope is able to undergo a partial eruption or whether it undergoes a transition in specific flux rope configuration shortly before the CME.
Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection. Both observations and numerical modeling, however, suggest that reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of magnetic flux onto a rising ejection by reconnection involving the ejections background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying the forces acting upon the ejection, generically increasing its upward acceleration. The modified forces, in turn, can more strongly drive the reconnection. This feedback process acts, effectively, as an instability, which we refer to as a reconnective instability. Our analysis implies that CME models that neglect the effects of reconnection cannot accurately describe observed CME dynamics. Our ultimate aim is to understand changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux. This flux can be estimated from observations of flare ribbons and photospheric magnetic fields.
This Topical Issue of Solar Physics, devoted to the study of flux-rope structure in coronal mass ejections (CMEs), is based on two Coordinated Data Analysis Workshops (CDAWs) held in 2010 (20 - 23 September in Dan Diego, California, USA) and 2011 (September 5-9 in Alcala, Spain). The primary purpose of the CDAWs was to address the question: Do all CMEs have flux rope structure? There are 18 papers om this topical issue, including this preface.
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using the high-quality imaging data of AIA/SDO, here we show a well-observed coronal jet event, in which part of the jets, with the embedding coronal loops, runs into a nearby coronal hole (CH) and gets bounced towards the opposite direction. This is evidenced by the flat-shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME initially with a narrow and jet-like front is observed by the LASCO C2 coronagraph, propagating along the direction of the post-collision jet. We also observe some 304 A dark material flowing from the jet-CH interaction region towards the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and the large- scale magnetic topology of the CH being important to define the eventual propagating direction of this particular jet-CME eruption.
Flux emergence is widely recognized to play an important role in the initiation of coronal mass ejections. The Chen-Shibata (2000) model, which addresses the connection between emerging flux and flux rope eruptions, can be implemented numerically to study how emerging flux through the photosphere can impact the eruption of a pre-existing coronal flux rope. The models sensitivity to the initial conditions and reconnection micro-physics is investigated with a parameter study. In particular, we aim to understand the stability of the coronal flux rope in the context of X-point collapse and the effects of boundary driving in both unstratified and stratified atmospheres. In the absence of driving, we assess the behavior of waves in the vicinity of the X-point. With boundary driving applied, we study the effects of reconnection micro-physics and atmospheric stratification on the eruption. We find that the Chen-Shibata equilibrium can be unstable to an X-point collapse even in the absence of driving due to wave accumulation at the X-point. However, the equilibrium can be stabilized by reducing the compressibility of the plasma, which allows small-amplitude waves to pass through the X-point without accumulation. Simulations with the photospheric boundary driving evaluate the impact of reconnection micro-physics and atmospheric stratification on the resulting dynamics: we show the evolution of the system to be determined primarily by the structure of the global magnetic fields with little sensitivity to the micro-physics of magnetic reconnection; and in a stratified atmosphere, we identify a novel mechanism for producing quasi-periodic behavior at the reconnection site behind a rising flux rope as a possible explanation of similar phenomena observed in solar and stellar flares.