Do you want to publish a course? Click here

Pulse-shape calculations and applications using the AGATAGeFEM software package

220   0   0.0 ( 0 )
 Added by Joa Ljungvall
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A software package for modeling segmented High-Purity Segmented Germanium detectors, AGATAGeFEM, is presented. The choices made for geometry implementation and the calculations of the electric and weighting fields are discussed. Models used for charge-carrier velocities are described. Numerical integration of the charge-carrier transport equation is explained. Impact of noise and crosstalk on the achieved position resolution in AGATA detectors are investigated. The results suggest that crosstalk as seen in the AGATA detectors is of minor importance for the position resolution. The sensitivity of the pulse shapes to the parameters in the pulse-shape calculations is determined, this as a function of position in the detectors. Finally, AGATAGeFEM has been used to produce pulse-shape data bases for pulse-shape analyses of experimental data. The results with the new data base indicate improvement with respect to those with the standard AGATA data base.



rate research

Read More

Pulse shape discriminating scintillator materials in many cases allow the user to identify two basic kinds of pulses arising from two kinds of particles: neutrons and gammas. An uncomplicated solution for building a classifier consists of a two-component mixture model learned from a collection of pulses from neutrons and gammas at a range of energies. Depending on the conditions of data gathered to be classified, multiple classes of events besides neutrons and gammas may occur, most notably pileup events. All these kinds of events are anomalous and, in cases where the class of the particle is in doubt, it is preferable to remove them from the analysis. This study compares the performance of several machine learning and analytical methods for using the scores from the two-component model to identify anomalous events and in particular to remove pileup events. A specific outcome of this study is to propose a novel anomaly score, denoted G, from an unsupervised two-component model that is conveniently distributed on the interval [-1,1].
We present the development of a neutron detector array module made with $textit{para}$-terphenyl, a bright, fast, n/$gamma$ discriminating crystalline organic scintillator. The module is comprised of 2 cm $times$ 2 cm $times$ 2 cm $textit{p}$-terphenyl crystals that have been optically coupled together to create a $textit{pseudo-bar}$ module. While only relying on two photo detectors, the module is capable of distinguishing interactions between up to eight crystals. Furthermore, the module retains the $textit{p}$-terphenyls pulse shape discrimination (PSD) capability. Together this makes the pseudo-bar module a promising position-sensitive neutron detector. Here we present characteristics of the pseudo-bar module - its timing resolution as well as its pulse shape and position discrimination capabilities, and briefly discuss future plans for utilizing an array of pseudo-bar modules in a useful neutron detector system.
The GERDA experiment located at the LNGS searches for neutrinoless double beta (0 ubetabeta) decay of ^{76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched ^{76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV gamma rays from ^{208}Tl decays as well as 2 ubetabeta decays of ^{76}Ge are used as proxies for 0 ubetabeta decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92$pm$0.02 of signal-like events while about 80% of the background events at Q_{betabeta}=2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 ubetabeta decay. It retains 90% of DEP events and rejects about half of the events around Q_{betabeta}. The 2 ubetabeta events have an efficiency of 0.85pm0.02 and the one for 0 ubetabeta decays is estimated to be 0.90^{+0.05}_{-0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90% of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2 ubetabeta decays.
In this study, we evaluate and compare the pulse shape discrimination (PSD) performance of multipixel photon counters (MPPCs, also known as silicon photomultiphers - SiPMs) with that of a typical photomultiplier tube (PMT) when testing using CsI(Tl) scintillators. We use the charge comparison method, whereby we discriminate different types of particles by the ratio of charges integrated within two time-gates (the delayed part and the entire digitized waveform). For a satisfactory PSD performance, a setup should generate many photoelectrons (p.e.) and collect their charges efficiently. The PMT setup generates more p.e. than the MPPC setup does. With the same digitizer and the same long time-gate (the entire digitized waveform), the PMT setup is also better in charge collection. Therefore, the PMT setup demonstrates better PSD performance. We subsequently test the MPPC setup using a new data acquisition (DAQ) system. Using this new DAQ, the long time-gate is extended by nearly four times the length when using the previous digitizer. With this longer time-gate, we collect more p.e. at the tail part of the pulse and almost all the charges of the total collected p.e. Thus, the PSD performance of the MPPC setup is improved significantly. This study also provides an estimation of the short time-gate (the delayed part of the digitized waveform) that can give a satisfactory PSD performance without an extensive analysis to optimize this gate.
A comparative study of the neutron-$gamma$ Pulse Shape Discrimination (PSD) with seven organic scintillators is performed using an identical setup and digital electronics. The scintillators include plastics (EJ-299-33 and a plastic prototype), single crystals (stilbene and the recent doped $p$-terphenyl) and liquids (BC501A, NE213 and the deuterated liquid BC537). First, the overall PSD performance of the different scintillators is compared and threshold neutron energies for a given discrimination quality are determined. Then, using statistical arguments, two intrinsic contributions to the PSD capability of the scintillating materials are disentangled: the light yield and the specific pulse shapes induced by neutrons and $gamma$-rays. This separation provides additional insight into the behaviour of organic scintillators and allows a detailed comparison of the discrimination performance of the various materials. On the basis of this analysis, limitations of current organic scintillators and of recently proposed alternative scintillators are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا