No Arabic abstract
Observations suggest that protoplanetary disks have moderate accretion rates onto the central young star, especially at early stages (e.g. HL Tau), indicating moderate disk turbulence. However, recent ALMA observations suggest that dust is highly settled, implying weak turbulence. Motivated by such tension, we carry out 3D stratified local simulations of self-gravitating disks, focusing on settling of dust particles in actively accreting disks. We find that gravitationally unstable disks can have moderately high accretion rates while maintaining a relatively thin dust disk for two reasons. First, accretion stress from the self-gravitating spirals (self-gravity stress) can be stronger than the stress from turbulence (Reynolds stress) by a factor of 5-20. Second, the strong gravity from the gas to the dust decreases the dust scale height by another factor of $sim 2$. Furthermore, the turbulence is slightly anisotropic, producing a larger Reynolds stress than the vertical dust diffusion coefficient. Thus, gravitoturbulent disks have unusually high vertical Schmidt numbers ($Sc_z$) if we scale the total accretion stress with the vertical diffusion coefficient (e.g. $Sc_zsim$ 10-100). The reduction of the dust scale height by the gas gravity, should also operate in gravitationally stable disks ($Q>$1). Gravitational forces between particles become more relevant for the concentration of intermediate dust sizes, forming dense clouds of dust. After comparing with HL Tau observations, our results suggest that self-gravity and gravity among different disk components could be crucial for solving the conflict between the protoplanetary disk accretion and dust settling, at least at the early stages.
Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In this work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
The long-term evolution of a circumstellar disk starting from its formation and ending in the T Tauri phase was simulated numerically with the purpose of studying the evolution of dust in the disk with distinct values of viscous alpha-parameter and dust fragmentation velocity v_frag. We solved numerical hydrodynamics equations in the thin-disk limit, which are modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a maximum radius a_r. The former is strictly coupled to the gas, while the latter interacts with the gas via friction. The conversion of small to grown dust, dust growth, and dust self-gravity are also considered. We found that the process of dust growth known for the older protoplanetary phase also holds for the embedded phase of disk evolution. The dust growth efficiency depends on the radial distance from the star - a_r is largest in the inner disk and gradually declines with radial distance. In the inner disk, a_r is limited by the dust fragmentation barrier. The process of small-to-grown dust conversion is very fast once the disk is formed. The total mass of grown dust in the disk (beyond 1 AU) reaches tens or even hundreds of Earth masses already in the embedded phase of star formation and even a greater amount of grown dust drifts in the inner, unresolved 1 AU of the disk. Dust does not usually grow to radii greater than a few cm. A notable exception are models with alpha <= 10^{-3}, in which case a zone with reduced mass transport develops in the inner disk and dust can grow to meter-sized boulders in the inner 10 AU. Grown dust drifts inward and accumulates in the inner disk regions. This effect is most pronounced in the alpha <= 10^{-3} models where several hundreds of Earth masses can be accumulated in a narrow region of several AU from the star by the end of embedded phase. (abridged).
Aims and Methods. Accretion bursts triggered by the magnetorotational instability (MRI) in the innermost disk regions were studied for protoplanetary gas-dust disks formed from prestellar cores of various mass $M_{rm core}$ and mass-to-magnetic flux ratio $lambda$. Numerical magnetohydrodynamics simulations in the thin-disk limit were employed to study the long-term ($sim 1.0$~Myr) evolution of protoplanetary disks with an adaptive turbulent $alpha$-parameter, which depends explicitly on the strength of the magnetic field and ionization fraction in the disk. The numerical models also feature the co-evolution of gas and dust, including the back-reaction of dust on gas and dust growth. Results. Dead zone with a low ionization fraction $x <= 10^{-13}$ and temperature on the order of several hundred Kelvin forms in the inner disk soon after its formation, extending from several to several tens of astronomical units depending on the model. The dead zone features pronounced dust rings that are formed due to the concentration of grown dust particles in the local pressure maxima. Thermal ionization of alkaline metals in the dead zone trigger the MRI and associated accretion burst, which is characterized by a sharp rise, small-scale variability in the active phase, and fast decline once the inner MRI-active region is depleted of matter. The burst occurrence frequency is highest in the initial stages of disk formation, and is driven by gravitational instability (GI), but declines with diminishing disk mass-loading from the infalling envelope. There is a causal link between the initial burst activity and the strength of GI in the disk fueled by mass infall from the envelope. Abridged.
Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities, which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre $Qsimeq5$). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for $sim 10^{3}$ orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.
Vortices are believed to greatly help the formation of km sized planetesimals by collecting dust particles in their centers. However, vortex dynamics is commonly studied in non-self-gravitating disks. The main goal here is to examine the effects of disk self-gravity on the vortex dynamics via numerical simulations. In the self-gravitating case, when quasi-steady gravitoturbulent state is reached, vortices appear as transient structures undergoing recurring phases of formation, growth to sizes comparable to a local Jeans scale, and eventual shearing and destruction due to gravitational instability. Each phase lasts over 2-3 orbital periods. Vortices and density waves appear to be coupled implying that, in general, one should consider both vortex and density wave modes for a proper understanding of self-gravitating disk dynamics. Our results imply that given such an irregular and rapidly changing, transient character of vortex evolution in self-gravitating disks it may be difficult for such vortices to effectively trap dust particles in their centers that is a necessary process towards planet formation.