Do you want to publish a course? Click here

Kernel optimization for Low-Rank Multi-Fidelity Algorithms

84   0   0.0 ( 0 )
 Added by Akil Narayan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One of the major challenges for low-rank multi-fidelity (MF) approaches is the assumption that low-fidelity (LF) and high-fidelity (HF) models admit similar low-rank kernel representations. Low-rank MF methods have traditionally attempted to exploit low-rank representations of linear kernels, which are kernel functions of the form $K(u,v) = v^T u$ for vectors $u$ and $v$. However, such linear kernels may not be able to capture low-rank behavior, and they may admit LF and HF kernels that are not similar. Such a situation renders a naive approach to low-rank MF procedures ineffective. In this paper, we propose a novel approach for the selection of a near-optimal kernel function for use in low-rank MF methods. The proposed framework is a two-step strategy wherein: (1) hyperparameters of a library of kernel functions are optimized, and (2) a particular combination of the optimized kernels is selected, through either a convex mixture (Additive Kernels) or through a data-driven optimization (Adaptive Kernels). The two resulting methods for this generalized framework both utilize only the available inexpensive low-fidelity data and thus no evaluation of high-fidelity simulation model is needed until a kernel is chosen. These proposed approaches are tested on five non-trivial problems including multi-fidelity surrogate modeling for one- and two-species molecular systems, gravitational many-body problem, associating polymer networks, plasmonic nano-particle arrays, and an incompressible flow in channels with stenosis. The results for these numerical experiments demonstrate the numerical stability efficiency of both proposed kernel function selection procedures, as well as high accuracy of their resultant predictive models for estimation of quantities of interest. Comparisons against standard linear kernel procedures also demonstrate increased accuracy of the optimized kernel approaches.



rate research

Read More

We describe a simple, black-box compression format for tensors with a multiscale structure. By representing the tensor as a sum of compressed tensors defined on increasingly coarse grids, we capture low-rank structures on each grid-scale, and we show how this leads to an increase in compression for a fixed accuracy. We devise an alternating algorithm to represent a given tensor in the multiresolution format and prove local convergence guarantees. In two dimensions, we provide examples that show that this approach can beat the Eckart-Young theorem, and for dimensions higher than two, we achieve higher compression than the tensor-train format on six real-world datasets. We also provide results on the closedness and stability of the tensor format and discuss how to perform common linear algebra operations on the level of the compressed tensors.
This paper introduces new solvers for the computation of low-rank approximate solutions to large-scale linear problems, with a particular focus on the regularization of linear inverse problems. Although Krylov methods incorporating explicit projections onto low-rank subspaces are already used for well-posed systems that arise from discretizing stochastic or time-dependent PDEs, we are mainly concerned with algorithms that solve the so-called nuclear norm regularized problem, where a suitable nuclear norm penalization on the solution is imposed alongside a fit-to-data term expressed in the 2-norm: this has the effect of implicitly enforcing low-rank solutions. By adopting an iteratively reweighted norm approach, the nuclear norm regularized problem is reformulated as a sequence of quadratic problems, which can then be efficiently solved using Krylov methods, giving rise to an inner-outer iteration scheme. Our approach differs from the other solvers available in the literature in that: (a) Kronecker product properties are exploited to define the reweighted 2-norm penalization terms; (b) efficient preconditioned Krylov methods replace gradient (projection) methods; (c) the regularization parameter can be efficiently and adaptively set along the iterations. Furthermore, we reformulate within the framework of flexible Krylov methods both the new inner-outer methods for nuclear norm regularization and some of the existing Krylov methods incorporating low-rank projections. This results in an even more computationally efficient (but heuristic) strategy, that does not rely on an inner-outer iteration scheme. Numerical experiments show that our new solvers are competitive with other state-of-the-art solvers for low-rank problems, and deliver reconstructions of increased quality with respect to other classical Krylov methods.
Recovery of low-rank matrices from a small number of linear measurements is now well-known to be possible under various model assumptions on the measurements. Such results demonstrate robustness and are backed with provable theoretical guarantees. However, extensions to tensor recovery have only recently began to be studied and developed, despite an abundance of practical tensor applications. Recently, a tensor variant of the Iterative Hard Thresholding method was proposed and theoretical results were obtained that guarantee exact recovery of tensors with low Tucker rank. In this paper, we utilize the same tensor version of the Restricted Isometry Property (RIP) to extend these results for tensors with low CANDECOMP/PARAFAC (CP) rank. In doing so, we leverage recent results on efficient approximations of CP decompositions that remove the need for challenging assumptions in prior works. We complement our theoretical findings with empirical results that showcase the potential of the approach.
Some fast algorithms for computing the eigenvalues of a block companion matrix $A = U + XY^H$, where $Uin mathbb C^{ntimes n}$ is unitary block circulant and $X, Y inmathbb{C}^{n times k}$, have recently appeared in the literature. Most of these algorithms rely on the decomposition of $A$ as product of scalar companion matrices which turns into a factored representation of the Hessenberg reduction of $A$. In this paper we generalize the approach to encompass Hessenberg matrices of the form $A=U + XY^H$ where $U$ is a general unitary matrix. A remarkable case is $U$ unitary diagonal which makes possible to deal with interpolation techniques for rootfinding problems and nonlinear eigenvalue problems. Our extension exploits the properties of a larger matrix $hat A$ obtained by a certain embedding of the Hessenberg reduction of $A$ suitable to maintain its structural properties. We show that $hat A$ can be factored as product of lower and upper unitary Hessenberg matrices possibly perturbed in the first $k$ rows, and, moreover, such a data-sparse representation is well suited for the design of fast eigensolvers based on the QR/QZ iteration. The resulting algorithm is fast and backward stable.
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image processing and recognition problems, only a small number of dominant SVD triplets are selected, while in some applications such as quaternion total least squares problem, small SVD triplets (small singular values and associated singular vectors) and numerical rank with respect to a small threshold are required. In this paper, we propose a randomized quaternion SVD (verbrandsvdQ) method to compute a small number of SVD triplets of a large-scale quaternion matrix. Theoretical results are given about approximation errors and the corresponding algorithm adapts to the low-rank matrix approximation problem. When the restricted rank increases, it might lead to information loss of small SVD triplets. The blocked quaternion randomized SVD algorithm is then developed when the numerical rank and information about small singular values are required. For color face recognition problems, numerical results show good performance of the developed quaternion randomized SVD method for low-rank approximation of a large-scale quaternion matrix. The blocked randomized SVD algorithm is also shown to be more robust than unblocked method through several experiments, and approximation errors from the blocked scheme are very close to the optimal error obtained by truncating a full SVD.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا