Do you want to publish a course? Click here

Biomimetic peptide enriched nonwoven scaffolds promote calcium phosphate mineralisation

49   0   0.0 ( 0 )
 Added by Giuseppe Tronci
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Cell-free translational strategies are needed to accelerate the repair of mineralised tissues, particularly large bone defects, using minimally invasive approaches. Regenerative bone scaffolds should ideally mimic aspects of the tissues ECM over multiple length scales and enable surgical handling and fixation during implantation in vivo. Leveraging the knowledge gained with bioactive self-assembling peptides (SAPs) and SAP-enriched electrospun fibres, we presented a cell free approach for promoting mineralisation via apatite deposition and crystal growth, in vitro, of SAP-enriched nonwoven scaffolds. The nonwoven scaffold was made by electrospinning poly(epsilon-caprolactone) (PCL) in the presence of either peptide P11-4 (Ac-QQRFEWEFEQQ-Am) or P11-8 (Ac-QQRFOWOFEQQ-Am), in light of the polymers fibre forming capability and its hydrolytic degradability as well as the well-known apatite nucleating capability of SAPs. The 11-residue family of peptides (P11-X) has the ability to self-assemble into beta-sheet ordered structures at the nano-scale and to generate hydrogels at the macroscopic scale, some of which are capable of promoting biomineralisation due to their apatite-nucleating capability. Both variants of SAP-enriched nonwoven used in this study were proven to be biocompatible with murine fibroblasts and supported nucleation and growth of apatite minerals in simulated body fluid (SBF) in vitro. The fibrous nonwoven provided a structurally robust scaffold, with the capability to control SAP release behaviour. Up to 75% of P11-4 and 45% of P11-8 were retained in the fibres after 7-day incubation in aqueous solution at pH 7.4. The encapsulation of SAP in a nonwoven system with apatite-forming as well as localised and long-term SAP delivery capabilities is appealing as a potential means of achieving cost-effective bone repair therapy for critical size defects.



rate research

Read More

Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and epolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2) and osteoclasts derived from RAW 264.7 macrophages. In vivo studies were carried out by implantation into cavitary defects drilled in osteoporotic sheep. The scaffolds evidenced excellent bone regeneration properties, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, thick trabeculae, high vascularization and high presence of osteoblasts and osteoclasts. In order to evaluate the effects of the local release of an antiosteoporotic drug, 1% (%wt) of zoledronic acid was incorporated to the scaffolds. The scaffolds loaded with zoledronic acid induced apoptosis in Saos 2 cells, impeded osteoclast differentiation in a time dependent manner and inhibited bone healing, promoting an intense inflammatory response in osteoporotic sheep.
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture tests. Those scaffolds made of nanocrystalline SiHA were colonized by fibrous tissue, promoted inflammatory response and fostered osteoclast recruitment. These observations discard nanocystalline SiHA as a suitable material for bone regeneration purposes. On the contrary, those scaffolds made of crystalline SiHA and decorated with VEGF exhibited bone regeneration properties, with high ossification degree, thicker trabeculae and higher presence of osteoblasts and blood vessels. Considering these results, macroporous scaffolds made of SiHA and decorated with VEGF are suitable bone grafts for regeneration purposes, even in adverse pathological scenarios such as osteoporosis.
Annealed importance sampling is a means to assign equilibrium weights to a nonequilibrium sample that was generated by a simulated annealing protocol. The weights may then be used to calculate equilibrium averages, and also serve as an ``adiabatic signature of the chosen cooling schedule. In this paper we demonstrate the method on the 50-atom dileucine peptide, showing that equilibrium distributions are attained for manageable cooling schedules. For this system, as naively implemented here, the method is modestly more efficient than constant temperature simulation. However, the method is worth considering whenever any simulated heating or cooling is performed (as is often done at the beginning of a simulation project, or during an NMR structure calculation), as it is simple to implement and requires minimal additional CPU expense. Furthermore, the naive implementation presented here can be improved.
Neural interfaces using biocompatible scaffolds provide crucial properties for the functional repair of nerve injuries and neurodegenerative diseases, including cell adhesion, structural support, and mass transport. Neural stimulation has also been found to be effective in promoting neural regeneration. This work provides a new strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable non-genetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation. 94% of photoacoustic stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74-fold in a dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that photoacoustic neural stimulation promoted neurite outgrowth by impacting the brain-derived neurotrophic factor (BDNF) pathway. As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated non-genetic PA neural stimulation functions and promoted neurite outgrowth, providing a new method for non-pharmacological neural regeneration.
Investigations over half a century have indicated that mechanical forces induce neurite growth - with neurites elongating at a rate of 0.1-0.3{mu}mh^{-1} per pico-Newton (pN) of applied force - when mechanical tension exceeds a threshold, with this being identified as 400-1000 pN for neurites of PC12 cells. Here we demonstrate that there is no threshold for neurite elongation of PC12 cells in response to applied mechanical forces. Instead, this proceeds at the same previously identified rate, on the application of tensions with intensity below 1pN. This supports the idea of mechanical tension as an endogenous signal used by neurons for promoting neurite elongation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا