Collisions Between Ultracold Molecules and Atoms in a Magnetic Trap


Abstract in English

We prepare mixtures of ultracold CaF molecules and Rb atoms in a magnetic trap and study their inelastic collisions. When the atoms are prepared in the spin-stretched state and the molecules in the spin-stretched component of the first rotationally excited state, they collide inelastically with a rate coefficient of $k_2 = (6.6 pm 1.5) times 10^{-11}$ cm$^{3}$/s at temperatures near 100~$mu$K. We attribute this to rotation-changing collisions. When the molecules are in the ground rotational state we see no inelastic loss and set an upper bound on the spin relaxation rate coefficient of $k_2 < 5.8 times 10^{-12}$ cm$^{3}$/s with 95% confidence. We compare these measurements to the results of a single-channel loss model based on quantum defect theory. The comparison suggests a short-range loss parameter close to unity for rotationally excited molecules, but below 0.04 for molecules in the rotational ground state.

Download