Ideal topological gas in the high temperature phase of SU(3) gauge theory


Abstract in English

We show that the nature of the topological fluctuations in $SU(3)$ gauge theory changes drastically at the finite temperature phase transition. Starting from temperatures right above the phase transition topological fluctuations come in well separated lumps of unit charge that form a non-interacting ideal gas. Our analysis is based on a novel method to count not only the net topological charge, but also separately the number of positively and negatively charged lumps in lattice configurations using the spectrum of the overlap Dirac operator. This enables us to determine the joint distribution of the number of positively and negatively charged topological objects, and we find this distribution to be consistent with that of an ideal gas of unit charged topological objects.

Download