No Arabic abstract
The TeV $gamma$-ray halo around the Geminga pulsar is an important indicator of cosmic-ray (CR) propagation in the local zone of the Galaxy as it reveals the spatial distribution of the electrons and positrons escaping from the pulsar. Considering the intricate magnetic field in the interstellar medium (ISM), it is proposed that superdiffusion model could be more realistic to describe the CR propagation than the commonly used normal diffusion model. In this work, we test the superdiffusion model in the ISM around the Geminga pulsar by fitting to the surface brightness profile of the Geminga halo measured by HAWC. Our results show that the chi-square statistic monotonously increases as $alpha$ decreases from 2 to 1, where $alpha$ is the characteristic index of superdiffusion describing the degree of fractality of the ISM and $alpha=2$ corresponds to the normal diffusion model. We find that model with $alpha<1.32$ (or $<1.4$, depending on the data used in fit) is disfavored at 95% confidence level. Superdiffusion model with $alpha$ close to 2 can well explain the morphology of the Geminga halo, while it predicts much higher positron flux on the Earth than the normal diffusion model. This has important implication for the interpretation of the CR positron excess.
Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs.
The superb spatial resolution of Chandra has allowed us to detect a 20-long tail behind the Geminga pulsar, with a hard spectrum (photon index 1.0+/-0.2) and a luminosity (1.3+/-0.2) 10^{29} ergs/s in the 0.5 - 8 keV band, for an assumed distance of 200 pc. The tail could be either a pulsar jet, confined by a toroidal magnetic field of about 100 microGauss, or it can be associated with the shocked relativistic wind behind the supersonically moving pulsar confined by the ram pressure of the oncoming interstellar medium. We also detected an arc-like structure 5 - 7 ahead of the pulsar, extended perpendicular to the tail, with a factor of 3 lower luminosity. We see a 3-sigma enhancement in the Chandra image apparently connecting the arc with the southern outer tail that has been possibly detected with XMM-Newton. The observed structures imply that the Gemingas pulsar wind is intrinsically anisotropic.
Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20 long central (axial) tail directed opposite to the pulsars proper motion and two 2 long, bent lateral (outer) tails. Here we report on a deeper (78 ks) Chandra observation and a few additional XMM-Newton observations of the Geminga PWN. The new Chandra observation has shown that the axial tail, which includes up to three brighter blobs, extends at least 50 (i.e., 0.06 d_{250} pc) from the pulsar. It also allowed us to image the patchy outer tails and the emission in the immediate vicinity of the pulsar with high resolution. The PWN luminosity, L_{0.3-8 keV} ~ 3times 10^{29} d_{250}^2 erg/s, is lower than the pulsars magnetospheric luminosity by a factor of 10. The spectra of the PWN elements are rather hard (photon index ~ 1). Comparing the two Chandra images, we found evidence of PWN variability, including possible motion of the blobs along the axial tail. The X-ray PWN is the synchrotron radiation from relativistic particles of the pulsar wind; its morphology is connected with the supersonic motion of Geminga. We speculate that the outer tails are either (1) a sky projection of the limb-brightened boundary of a shell formed in the region of contact discontinuity, where the wind bulk flow is decelerated by shear instability, or (2) polar outflows from the pulsar bent by the ram pressure from the ISM. In the former case, the axial tail may be a jet emanating along the pulsars spin axis, perhaps aligned with the direction of motion. In the latter case, the axial tail may be the shocked pulsar wind collimated by the ram pressure.
A recent study by Posselt et al. (2017) reported the deepest X-ray investigation of the Geminga pulsar wind nebula (PWN) by using emph{Chandra X-ray Observatory}. In comparison with previous studies of this system, a number of new findings have been reported and we found these suggest the possible variabilities in various components of this PWN. This motivates us to carry out a dedicated search for the morphological and spectral variations of this complex nebula. We have discovered variabilities on timescales from a few days to a few months from different components of the nebula. The fastest change occurred in the circumstellar environment at a rate of 80 per cent of the speed of light. One of the most spectacular results is the wiggling of a half light-year long tail as an extension of the jet, which is significantly bent by the ram pressure. The jet wiggling occurred at a rate of about 20 per cent of the speed of light. This twisted structure can possibly be a result of a propagating torsional Alf`{v}en wave. We have also found evidence of spectral hardening along this tail for a period of about nine months.
We present a three-year series of observations at 24 microns with the Spitzer Space Telescope of the interstellar material in a 200 x 200 arcmin square area centered on Cassiopeia A. Interstellar dust heated by the outward light pulse from the supernova explosion emits in the form of compact, moving features. Their sequential outward movements allow us to study the complicated three-dimensional structure of the interstellar medium (ISM) behind and near Cassiopeia A. The ISM consists of sheets and filaments, with many structures on a scale of a parsec or less. The spatial power spectrum of the ISM appears to be similar to that of fractals with a spectral index of 3.5. The filling factor for the small structures above the spatial wavenumber k ~ 0.5 cycles/pc is only ~ 0.4%.