We show that compact Riemannian manifolds, regarded as metric spaces with their global geodesic distance, cannot contain a number of rigid structures such as (a) arbitrarily large regular simplices or (b) arbitrarily long sequences of points equidistant from pairs of points preceding them in the sequence. All of this provides evidence that Riemannian metric spaces admit what we term loose embeddings into finite-dimensional Euclidean spaces: continuous maps that preserve both equality as well as inequality. We also prove a local-to-global principle for Riemannian-metric-space loose embeddability: if every finite subspace thereof is loosely embeddable into a common $mathbb{R}^N$, then the metric space as a whole is loosely embeddable into $mathbb{R}^N$ in a weakened sense.