When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of particle motions is a multiple of the period of driving, but the reasons for this behavior have remained unclear. Motivated by mesoscopic features of displacement fields in experiments on jammed solids, we propose and analyze a simple model of interacting soft spots -- locations where particles rearrange under stress and that resemble two-level systems with hysteresis. We show that multiperiodic behavior can arise among just three or more soft spots that interact with each other, but in all cases it requires frustrated interactions, illuminating this otherwise elusive type of interaction. We suggest directions for seeking this signature of frustration in experiments and for achieving it in designed systems.