Do you want to publish a course? Click here

Nikolai Chebotaryovs Problems in Modern Galois Theory

166   0   0.0 ( 0 )
 Added by Yonathan Stone
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This is an English translation of Nikolai Chebotaryovs paper Die Probleme der modernen Galoisschen Theorie from 1932. An excerpt from this paper was given as a lecture at the International Congress of Mathematicians in Zurich in 1932. With the lecture being given to commememorate the centennial of Evariste Galois death, the paper is a broad survey of various contemporary problems in Galois Theory the author found represented the culminations of work done by Galois and his successors.



rate research

Read More

We study the relationship between the local and global Galois theory of function fields over a complete discretely valued field. We give necessary and sufficient conditions for local separable extensions to descend to global extensions, and for the local absolute Galois group to inject into the global absolute Galois group. As an application we obtain a local-global principle for the index of a variety over such a function field. In this context we also study algebra
We present a list of problems in arithmetic topology posed at the June 2019 PIMS/NSF workshop on Arithmetic Topology. Three problem sessions were hosted during the workshop in which participants proposed open questions to the audience and engaged in shared discussions from their own perspectives as working mathematicians across various fields of study. Participants were explicitly asked to provide problems of various levels of difficulty, with the goal of capturing a cross-section of exciting challenges in the field that could help guide future activity. The problems, together with references and brief discussions when appropriate, are collected below into three categories: 1) topological analogues of arithmetic phenomena, 2) point counts, stability phenomena and the Grothendieck ring, and 3) tools, methods and examples.
192 - J. Heller , K. Ormsby 2014
For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and eta (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full and faithful embedding after eta-completion if a motivic version of Serres finiteness theorem is valid. We produce strong necessary conditions on the field extension L/k for this functor to be full and faithful. Along the way, we produce several results on the stable C_2-equivariant Betti realization functor and prove convergence theorems for the p-primary C_2-equivariant Adams spectral sequence.
This paper appeals to the figure of Evariste Galois for investigating the gates between mathematics and their publics. The figure of Galois draws some lines of/within mathematics for/from the outside of mathematics and these lines in turn sketch the silhouette of Galois as a historical figure. The present paper especially investigates the collective categories that have been used in various types of public discourses on Galoiss work (e.g. equations, groups, algebra, analysis, France, Germany etc.). In a way, this paper aims at shedding light on the boundaries some individuals drew by getting Galois his gun. It is our aim to highlight the roles of authority some individuals (such as as Picard) took on in regard with the public figure of Galois as well as the roles such authorities assigned to other individuals (such as the mediating role assigned to Jordan as a mediator between Galoiss ideas and the public). The boundary-works involved by most public references to Galois have underlying them a long-term tension between academic and public legitimacies in the definition of some models for mathematical lives (or mathematics personae)
We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of sl_2(C)-modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا