No Arabic abstract
We propose an ultracold-atom setting where a fermionic superfluidity with attractive s-wave interaction is uploaded in a non-Hermitian Lieb optical lattice. The existence of a real-energy flat band solution is revealed. We show that the interplay between the skin effect and flat-band localization leads to exotic localization properties. We develop a multiband mean-field description of this system and use both order parameters and superfluid weight to describe the phase transition. A relation between the superfluid weight and non-Hermitian quantum metric of the quantum states manifold is built. We find non-monotone criticality depending on the non-Hermiticity, and the non-reciprocity prominently enhances the phase coherence of the pairing field, suggesting ubiquitous critical behavior of the non-Hermitian fermionic superfluidity.
The ground state and transport properties of the Lieb lattice flat band in the presence of an attractive Hubbard interaction are considered. It is shown that the superfluid weight can be large even for an isolated and strictly flat band. Moreover the superfluid weight is proportional to the interaction strength and to the quantum metric, a band structure invariant obtained from the flat-band Bloch functions. These predictions are amenable to verification with ultracold gases and may explain the anomalous behaviour of the superfluid weight of high-Tc superconductors.
We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional (1D) optical lattice, using a pairing fluctuation theory. We show that, besides widespread pseudogap phenomena and intermediate temperature superfluidity, the superfluid phase is readily destroyed except in a limited region of the parameter space. We find a new mechanism for pair hopping, assisted by the excessive majority fermions, in the presence of continuum-lattice mixing, which leads to an unusual constant BEC asymptote for $T_c$ that is independent of pairing strength. In result, on the BEC side of unitarity, superfluidity, when it exists, may be strongly enhanced by population imbalance.
In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with a nearest-neighbor (NN) pseudo-spin interaction, and also inter- and intra-species dipole-dipole interactions (DDI). In particular, we focus on the case in which two component hard-core bosons have anti-parallel polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational method and also the quantum Monte-Carlo simulations (QMC). The both calculations show that a stripe solid order, besides a checkerboard one, appears as a result of the DDI. By the QMC, we find that two kinds of supersolid (SS) form, checkerboard SS and stripe SS, and we also verify the existence of some exotic phase between the stripe solid and checkerboard SS. Finally by the QMC, we study the t-J-like model, which was experimentally realized recently by A. de Paz et al. [Phys. Rev. Lett. {bf 111}, 185305 (2013)].
Motivated by recent experiments on atomic Dirac fermions in a tunable honeycomb optical lattice, we study the attractive Hubbard model of superfluidity in the anisotropic honeycomb lattice. At weak-coupling, we find that the maximum mean field pairing transition temperature, as a function of density and interaction strength, occurs for the case with isotropic hopping amplitudes. In this isotropic case, we go beyond mean field theory and study collective fluctuations, treating both pairing and density fluctuations for interaction strengths ranging from weak to strong coupling. We find evidence for a sharp sound mode, together with a well-defined Leggett mode over a wide region of the phase diagram. We also calculate the superfluid order parameter and collective modes in the presence of nonzero superfluid flow. The flow-induced softening of these collective modes leads to dynamical instabilities involving stripe-like density modulations as well as a Leggett-mode instability associated with the natural sublattice symmetry breaking charge-ordered state on the honeycomb lattice. The latter provides a non-trivial test for the experimental realization of the one-band Hubbard model. We delineate regimes of the phase diagram where the critical current is limited by depairing or by such collective instabilities, and discuss experimental implications of our results.
The superfluidity and pairing phenomena in ultracold atomic Fermi gases have been of great interest in recent years, with multiple tunable parameters. Here we study the BCS-BEC crossover behavior of balanced two-component Fermi gases in a one-dimensional optical lattice, which is distinct from the simple three-dimensional (3D) continuum and a fully 3D lattice often found in a condensed matter system. We use a pairing fluctuation theory which includes self-consistent feedback effects at finite temperatures, and find widespread pseudogap phenomena beyond the BCS regime. As a consequence of the lattice periodicity, the superfluid transition temperature $T_c$ decreases with pairing strength in the BEC regime, where it approaches asymptotically $T_c = pi an/2m$, with $a$ being the $s$-wave scattering length, and $n$ ($m$) the fermion density (mass). In addition, the quasi-two dimensionality leads to fast growing (absolute value of the) fermionic chemical potential $mu$ and pairing gap $Delta$, which depends exponentially on the ratio $d/a$. Importantly, $T_c$ at unitarity increases with the lattice constant $d$ and hopping integral $t$. The effect of the van Hove singularity on $T_c$ is identified. The superfluid density exhibits $T^{3/2}$ power laws at low $T$, away from the extreme BCS limit. These predictions can be tested in future experiments.