Do you want to publish a course? Click here

Lattices of logmodular algebras

61   0   0.0 ( 0 )
 Added by Manish Kumar
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A subalgebra $mathcal{A}$ of a $C^*$-algebra $mathcal{M}$ is logmodular (resp. has factorization) if the set ${a^*a; atext{ is invertible with }a,a^{-1}inmathcal{A}}$ is dense in (resp. equal to) the set of all positive and invertible elements of $mathcal{M}$. There are large classes of well studied algebras, both in commutative and non-commutative settings, which are known to be logmodular. In this paper, we show that the lattice of projections in a von Neumann algebra $mathcal{M}$ whose ranges are invariant under a logmodular algebra in $mathcal{M}$, is a commutative subspace lattice. Further, if $mathcal{M}$ is a factor then this lattice is a nest. As a special case, it follows that all reflexive (in particular, completely distributive CSL) logmodular subalgebras of type I factors are nest algebras, thus answering a question of Paulsen and Raghupathi [Trans. Amer. Math. Soc., 363 (2011) 2627-2640]. We also discuss some sufficient criteria under which an algebra having factorization is automatically reflexive and is a nest algebra.

rate research

Read More

We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Aglers theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.
A free semigroupoid algebra is the closure of the algebra generated by a TCK family of a graph in the weak operator topology. We obtain a structure theory for these algebras analogous to that of free semigroup algebra. We clarify the role of absolute continuity and wandering vectors. These results are applied to obtain a Lebesgue-von Neumann-Wold decomposition of TCK families, along with reflexivity, a Kaplansky density theorem and classification for free semigroupoid algebras. Several classes of examples are discussed and developed, including self-adjoint examples and a classification of atomic free semigroupoid algebras up to unitary equivalence.
Given a von Neumann algebra $M$ denote by $S(M)$ and $LS(M)$ respectively the algebras of all measurable and locally measurable operators affiliated with $M.$ For a faithful normal semi-finite trace $tau$ on $M$ let $S(M, tau)$ (resp. $S_0(M, tau)$) be the algebra of all $tau$-measurable (resp. $tau$-compact) operators from $S(M).$ We give a complete description of all derivations on the above algebras of operators in the case of type I von Neumann algebra $M.$ In particular, we prove that if $M$ is of type I$_infty$ then every derivation on $LS(M)$ (resp. $S(M)$ and $S(M,tau)$) is inner, and each derivation on $S_0(M, tau)$ is spatial and implemented by an element from $S(M, tau).$
We explore the recently introduced local-triviality dimensions by studying gauge actions on graph $C^*$-algebras, as well as the restrictions of the gauge action to finite cyclic subgroups. For $C^*$-algebras of finite acyclic graphs and finite cycles, we characterize the finiteness of these dimensions, and we further study the gauge actions on many examples of graph $C^*$-algebras. These include the Toeplitz algebra, Cuntz algebras, and $q$-deformed spheres.
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras that arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا