No Arabic abstract
Mobile edge computing (MEC) has emerged as one of the key technical aspects of the fifth-generation (5G) networks. The integration of MEC with resource-constrained unmanned aerial vehicles (UAVs) could enable flexible resource provisioning for supporting dynamic and computation-intensive UAV applications. Existing resource trading could facilitate this paradigm with proper incentives, which, however, may often incur unexpected negotiation latency and energy consumption, trading failures and unfair pricing, due to the unpredictable nature of the resource trading process. Motivated by these challenges, an efficient futures-based resource trading mechanism for edge computing-assisted UAV network is proposed, where a mutually beneficial and risk-tolerable forward contract is devised to promote resource trading between an MEC server (seller) and a UAV (buyer). Two key problems i.e. futures contract design before trading and power optimization during trading are studied. By analyzing historical statistics associated with future resource supply, demand, and air-to-ground communication quality, the contract design is formulated as a multi-objective optimization problem, aiming to maximize both the sellers and the buyers expected utilities, while estimating their acceptable risk tolerance. Accordingly, we propose an efficient bilateral negotiation scheme to help players reach a trading consensus on the amount of resources and the relevant price. For the power optimization problem, we develop a practical algorithm that enables the buyer to determine its optimal transmission power via convex optimization techniques. Comprehensive simulations demonstrate that the proposed mechanism offers both players considerable utilities, while outperforming the onsite trading mechanism on trading failures and fairness, negotiation latency, and cost.
Mobile edge computing (MEC) has become a promising solution to utilize distributed computing resources for supporting computation-intensive vehicular applications in dynamic driving environments. To facilitate this paradigm, the onsite resource trading serves as a critical enabler. However, dynamic communications and resource conditions could lead unpredictable trading latency, trading failure, and unfair pricing to the conventional resource trading process. To overcome these challenges, we introduce a novel futures-based resource trading approach in edge computing-enabled internet of vehicles (IoV), where a forward contract is used to facilitate resource trading related negotiations between an MEC server (seller) and a vehicle (buyer) in a given future term. Through estimating the historical statistics of future resource supply and network condition, we formulate the futures-based resource trading as the optimization problem aiming to maximize the sellers and the buyers expected utility, while applying risk evaluations to relieve possible losses incurred by the uncertainties in the system. To tackle this problem, we propose an efficient bilateral negotiation approach which facilitates the participants reaching a consensus. Extensive simulations demonstrate that the proposed futures-based resource trading brings considerable utilities to both participants, while significantly outperforming the baseline methods on critical factors, e.g., trading failures and fairness, negotiation latency and cost.
Securing necessary resources for edge computing processes via effective resource trading becomes a critical technique in supporting computation-intensive mobile applications. Conventional onsite spot trading could facilitate this paradigm with proper incentives, which, however, incurs excessive decision-making latency/energy consumption, and further leads to underutilization of dynamic resources. Motivated by this, a hybrid market unifying futures and spot is proposed to facilitate resource trading among an edge server (seller) and multiple smart devices (buyers) by encouraging some buyers to sign a forward contract with seller in advance, while leaving the remaining buyers to compete for available resources with spot trading. Specifically, overbooking is adopted to achieve substantial utilization and profit advantages owing to dynamic resource demands. By integrating overbooking into futures market, mutually beneficial and risk-tolerable forward contracts with appropriate overbooking rate can be achieved relying on analyzing historical statistics associated with future resource demand and communication quality, which are determined by an alternative optimization-based negotiation scheme. Besides, spot trading problem is studied via considering uniform/differential pricing rules, for which two bilateral negotiation schemes are proposed by addressing both non-convex optimization and knapsack problems. Experimental results demonstrate that the proposed mechanism achieves mutually beneficial players utilities, while outperforming baseline methods on critical indicators, e.g., decision-making latency, resource usage, etc.
Scalability and security problems of the centralized architecture models in cyberphysical systems have great potential to be solved by novel blockchain based distributed models.A decentralized energy trading system takes advantage of various sources and effectively coordinates the energy to ensure optimal utilization of the available resources. It achieves that goal by managing physical, social and business infrastructures using technologies such as Internet of Things (IoT), cloud computing and network systems. Addressing the importance of blockchain-enabled energy trading in the context of cyberphysical systems, this article provides a thorough overview of the P2P energy trading and the utilization of blockchain to enhance the efficiency and the overall performance including the degree of decentralization, scalability and the security of the systems. Three blockchain based energy trading models have been proposed to overcome the technical challenges and market barriers for better adoption of this disruptive technology.
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.
Recent years have witnessed a rapid proliferation of smart Internet of Things (IoT) devices. IoT devices with intelligence require the use of effective machine learning paradigms. Federated learning can be a promising solution for enabling IoT-based smart applications. In this paper, we present the primary design aspects for enabling federated learning at network edge. We model the incentive-based interaction between a global server and participating devices for federated learning via a Stackelberg game to motivate the participation of the devices in the federated learning process. We present several open research challenges with their possible solutions. Finally, we provide an outlook on future research.