No Arabic abstract
Methods. We have modelled a sample of ~800 nearby galaxies, spanning a wide range of metallicity, gas fraction, specific star formation rate and Hubble stage. We have derived the dust properties of each object from its spectral energy distribution. Through an additional level of analysis, we have inferred the timescales of dust condensation in core-collapse supernova ejecta, grain growth in cold clouds and dust destruction by shock waves. Throughout this paper, we have adopted a hierarchical Bayesian approach, resulting in a single large probability distribution of all the parameters of all the galaxies, to ensure the most rigorous interpretation of our data. Results. We confirm the drastic evolution with metallicity of the dust-to-metal mass ratio (by two orders of magnitude), found by previous studies. We show that dust production by core-collapse supernovae is efficient only at very low-metallicity, a single supernova producing on average less than ~0.03 Msun/SN of dust. Our data indicate that grain growth is the dominant formation mechanism at metallicity above ~1/5 solar, with a grain growth timescale shorter than ~50 Myr at solar metallicity. Shock destruction is relatively efficient, a single supernova clearing dust on average in at least ~1200 Msun/SN of gas. These results are robust when assuming different stellar initial mass functions. In addition, we show that early-type galaxies are outliers in several scaling relations. This feature could result from grain thermal sputtering in hot X-ray emitting gas, an hypothesis supported by a negative correlation between the dust-to-stellar mass ratio and the X-ray photon rate per grain. Finally, we confirm the well-known evolution of the aromatic-feature-emitting grain mass fraction as a function of metallicity and interstellar radiation field intensity. Our data indicate the relation with metallicity is significantly stronger.
We present a study of the dust, stars and atomic gas (HI) in an HI-selected sample of local galaxies (z<0.035) in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) fields. This HI-selected sample reveals a population of very high gas fraction (>80 per cent), low stellar mass sources that appear to be in the earliest stages of their evolution. We compare this sample with dust and stellar mass selected samples to study the dust and gas scaling relations over a wide range of gas fraction (proxy for evolutionary state of a galaxy). The most robust scaling relations for gas and dust are those linked to NUV-r (SSFR) and gas fraction, these do not depend on sample selection or environment. At the highest gas fractions, our additional sample shows the dust content is well below expectations from extrapolating scaling relations for more evolved sources, and dust is not a good tracer of the gas content. The specific dust mass for local galaxies peaks at a gas fraction of ~75 per cent. The atomic gas depletion time is also longer for high gas fraction galaxies, opposite to the trend found for molecular gas depletion timescale. We link this trend to the changing efficiency of conversion of HI to H2 as galaxies increase in stellar mass surface density as they evolve. Finally, we show that galaxies start out barely obscured and increase in obscuration as they evolve, yet there is no clear and simple link between obscuration and global galaxy properties.
The dust mass absorption coefficient, $kappa_{d}$, is the conversion function used to infer physical dust masses from observations of dust emission. However, it is notoriously poorly constrained, and it is highly uncertain how it varies, either between or within galaxies. Here we present the results of a proof-of concept study, using the DustPedia data for two nearby face-on spiral galaxies M74 (NGC 628) and M83 (NGC 5236), to create the first ever maps of $kappa_{d}$ in galaxies. We determine $kappa_{d}$ using an empirical method that exploits the fact that the dust-to-metals ratio of the interstellar medium is constrained by direct measurements of the depletion of gas-phase metals. We apply this method pixel-by-pixel within M74 and M83, to create maps of $kappa_{d}$. We also demonstrate a novel method of producing metallicity maps for galaxies with irregularly-sampled measurements, using the machine learning technique of Gaussian process regression. We find strong evidence for significant variation in $kappa_{d}$. We find values of $kappa_{d}$ at 500 $mu$m spanning the range 0.11-0.25 ${rm m^{2},kg^{-1}}$ in M74, and 0.15-0.80 ${rm m^{2},kg^{-1}}$ in M83. Surprisingly, we find that $kappa_{d}$ shows a distinct inverse correlation with the local density of the interstellar medium. This inverse correlation is the opposite of what is predicted by standard dust models. However, we find this relationship to be robust against a large range of changes to our method - only the adoption of unphysical or highly unusual assumptions would be able to suppress it.
Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia sample. For this purpose, we make use of Herschel imaging in five bands, from 100 to 500{mu}m, in which the cold dust constituent is primarily traced and makes up the bulk of the dust mass in spiral galaxies. For a subsample of 320 disc galaxies, we successfully perform a simultaneous fitting with a single Sersic model of the Herschel images in all five bands using the multiband modelling code GALFITM. We report that the Sersic index $n$, which characterises the shape of the Sersic profile, lies systematically below 1 in all Herschel bands and is almost constant with wavelength. The average value at 250{mu}m is $0.67pm0.37$ (187 galaxies are fitted with $n_{250}leq0.75$, 87 galaxies have $0.75<n_{250}leq1.25$, and 46 - with $n_{250}>1.25$). Most observed profiles exhibit a depletion in the inner region (at $r<0.3-0.4$ of the optical radius $r_{25}$ ) and are more or less exponential in the outer part. We also find breaks in the dust emission profiles at longer distances $(0.5-0.6)r_{25}$ which are associated with the breaks in the optical and near-infrared. We assume that the observed deficit of dust emission in the inner galaxy region is related to the depression in the radial profile of the HI surface density in the same region because the atomic gas reaches high enough surface densities there to be transformed into molecular gas. If a galaxy has a triggered star formation in the inner region (for example, because of a strong bar instability, which transfers the gas inwards to the centre, or a pseudobulge formation), no depletion or even an excess of dust emission in the centre is observed.
The objective of this paper is to understand the variance of the far-infrared (FIR) spectral energy distribution (SED) of the DustPedia galaxies, and its link with the stellar and dust properties. An interesting aspect of the dust emission is the inferred FIR colours which could inform us about the dust content of galaxies, and how it varies with the physical conditions within galaxies. However, the inherent complexity of dust grains as well as the variety of physical properties depending on dust, hinder our ability to utilise their maximum potential. We use principal component analysis (PCA) to explore new hidden correlations with many relevant physical properties such as the dust luminosity, dust temperature, dust mass, bolometric luminosity, star-formation rate (SFR), stellar mass, specific SFR, dust-to-stellar mass ratio, the fraction of absorbed stellar luminosity by dust (f_abs), and metallicity. We find that 95% of the variance in our sample can be described by two principal components (PCs). The first component controls the wavelength of the peak of the SED, while the second characterises the width. The physical quantities that correlate better with the coefficients of the first two PCs, and thus control the shape of the FIR SED are: the dust temperature, the dust luminosity, the SFR, and f_abs. Finally, we find a weak tendency for low-metallicity galaxies to have warmer and broader SEDs, while on the other hand high-metallicity galaxies have FIR SEDs that are colder and narrower.
To study the dust evolution in the cosmological structure formation history, we perform a smoothed particle hydrodynamic simulation with a dust enrichment model in a cosmological volume. We adopt the dust evolution model that represents the grain size distribution by two sizes and takes into account stellar dust production and interstellar dust processing. We examine the dust mass function and the scaling properties of dust in terms of the characteristics of galaxies. The simulation broadly reproduces the observed dust mass functions at redshift $z = 0$, except that it overproduces the massive end at dust mass $M_mathrm{d} gtrsim 10^{8}$ ${rm M}_odot$. This overabundance is due to overproducing massive gas/metal-rich systems, but we also note that the relation between stellar mass and gas-phase metallicity is reproduced fairly well by our recipe. The relation between dust-to-gas ratio and metallicity shows a good agreement with the observed one at $z=0$, which indicates successful implementation of dust evolution in our cosmological simulation. Star formation consumes not only gas but also dust, causing a decreasing trend of the dust-to-stellar mass ratio at the high-mass end of galaxies. We also examine the redshift evolution up to $z sim~ 5$, and find that the galaxies have on average the highest dust mass at $z = 1-2$. For the grain size distribution, we find that galaxies with metallicity $sim 0.3~ Z_odot$ tend to have the highest small-to-large grain abundance ratio; consequently, the extinction curves in those galaxies have the steepest ultraviolet slopes.