No Arabic abstract
Models of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The probability of connections in the network is then a function of these variables. Real-world networks evolve over time, and many exhibit dynamics of node characteristics as well as of linking structure. Here we introduce and study natural temporal extensions of static hidden-variable network models with stochastic dynamics of hidden variables and links. The rates of the hidden variable dynamics and link dynamics are controlled by two parameters, and snapshots of networks in the dynamic models may or may not be equivalent to a static model, depending on the location in the parameter phase diagram. We quantify deviations from static-like behavior, and examine the level of structural persistence in the considered models. We explore tempor
We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.
This paper reviews, classifies and compares recent models for social networks that have mainly been published within the physics-oriented complex networks literature. The models fall into two categories: those in which the addition of new links is dependent on the (typically local) network structure (network evolution models, NEMs), and those in which links are generated based only on nodal attributes (nodal attribute models, NAMs). An exponential random graph model (ERGM) with structural dependencies is included for comparison. We fit models from each of these categories to two empirical acquaintance networks with respect to basic network properties. We compare higher order structures in the resulting networks with those in the data, with the aim of determining which models produce the most realistic network structure with respect to degree distributions, assortativity, clustering spectra, geodesic path distributions, and community structure (subgroups with dense internal connections). We find that the nodal attribute models successfully produce assortative networks and very clear community structure. However, they generate unrealistic clustering spectra and peaked degree distributions that do not match empirical data on large social networks. On the other hand, many of the network evolution models produce degree distributions and clustering spectra that agree more closely with data. They also generate assortative networks and community structure, although often not to the same extent as in the data. The ERG model turns out to produce the weakest community structure.
It was shown by Bell that no local hidden variable model is compatible with quantum mechanics. If, instead, one permits the hidden variables to be entirely non-local, then any quantum mechanical predictions can be recovered. In this paper, we consider general hidden variable models which can have both local and non-local parts. We then show the existence of (experimentally verifiable) quantum correlations that are incompatible with any hidden variable model having a non-trivial local part, such as the model proposed by Leggett.
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to general entangled states, which consists in verifying that the statistics resulting from a finite set of measurements is local, a much simpler problem. This leads to a sequence of tests which, in the limit, fully capture the set of quantum states admitting a LHV model. Similar methods are developed for constructing local hidden state models. We illustrate the practical relevance of these methods with several examples, and discuss further applications.
The recent progress of the Majorana experiments paves a way for the future tests of non-abelian braiding statistics and topologically-protected quantum information processing. However, a deficient design in those tests could be very dangerous and reach false-positive conclusions. A careful theoretical analysis is necessary in order to develop loophole-free tests. We introduce a series of classical hidden variable models to capture certain key properties of Majorana system: non-locality, topologically non-triviality, and quantum interference. Those models could help us to classify the Majorana properties and to set up the boundaries and limitations of Majorana non-abelian tests: fusion tests, braiding tests and test set with joint measurements. We find a hierarchy among those Majorana tests with increasing experimental complexity.