Gaussian limit for determinantal point processes with $J$-Hermitian kernels


Abstract in English

We show that the central limit theorem for linear statistics over determinantal point processes with $J$-Hermitian kernels holds under fairly general conditions. In particular, We establish Gaussian limit for linear statistics over determinantal point processes on union of two copies of $mathbb{R}^d$ when the correlation kernels are $J$-Hermitian translation-invariant.

Download