Do you want to publish a course? Click here

EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets

163   0   0.0 ( 0 )
 Added by Xiaohan Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Heavily overparameterized language models such as BERT, XLNet and T5 have achieved impressive success in many NLP tasks. However, their high model complexity requires enormous computation resources and extremely long training time for both pre-training and fine-tuning. Many works have studied model compression on large NLP models, but only focusing on reducing inference time while still requiring an expensive training process. Other works use extremely large batch sizes to shorten the pre-training time, at the expense of higher computational resource demands. In this paper, inspired by the Early-Bird Lottery Tickets recently studied for computer vision tasks, we propose EarlyBERT, a general computationally-efficient training algorithm applicable to both pre-training and fine-tuning of large-scale language models. By slimming the self-attention and fully-connected sub-layers inside a transformer, we are the first to identify structured winning tickets in the early stage of BERT training. We apply those tickets towards efficient BERT training, and conduct comprehensive pre-training and fine-tuning experiments on GLUE and SQuAD downstream tasks. Our results show that EarlyBERT achieves comparable performance to standard BERT, with 35~45% less training time. Code is available at https://github.com/VITA-Group/EarlyBERT.



rate research

Read More

Both performance and efficiency are crucial factors for sequence labeling tasks in many real-world scenarios. Although the pre-trained models (PTMs) have significantly improved the performance of various sequence labeling tasks, their computational cost is expensive. To alleviate this problem, we extend the recent successful early-exit mechanism to accelerate the inference of PTMs for sequence labeling tasks. However, existing early-exit mechanisms are specifically designed for sequence-level tasks, rather than sequence labeling. In this paper, we first propose a simple extension of sentence-level early-exit for sequence labeling tasks. To further reduce the computational cost, we also propose a token-level early-exit mechanism that allows partial tokens to exit early at different layers. Considering the local dependency inherent in sequence labeling, we employed a window-based criterion to decide for a token whether or not to exit. The token-level early-exit brings the gap between training and inference, so we introduce an extra self-sampling fine-tuning stage to alleviate it. The extensive experiments on three popular sequence labeling tasks show that our approach can save up to 66%-75% inference cost with minimal performance degradation. Compared with competitive compressed models such as DistilBERT, our approach can achieve better performance under the same speed-up ratios of 2X, 3X, and 4X.
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-to-sparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static. Code used in our work can be found in github.com/google-research/rigl.
There have been long-standing controversies and inconsistencies over the experiment setup and criteria for identifying the winning ticket in literature. To reconcile such, we revisit the definition of lottery ticket hypothesis, with comprehensive and more rigorous conditions. Under our new definition, we show concrete evidence to clarify whether the winning ticket exists across the major DNN architectures and/or applications. Through extensive experiments, we perform quantitative analysis on the correlations between winning tickets and various experimental factors, and empirically study the patterns of our observations. We find that the key training hyperparameters, such as learning rate and training epochs, as well as the architecture characteristics such as capacities and residual connections, are all highly correlated with whether and when the winning tickets can be identified. Based on our analysis, we summarize a guideline for parameter settings in regards of specific architecture characteristics, which we hope to catalyze the research progress on the topic of lottery ticket hypothesis.
The lottery ticket hypothesis (LTH) claims that randomly-initialized, dense neural networks contain (sparse) subnetworks that, when trained an equal amount in isolation, can match the dense networks performance. Although LTH is useful for discovering efficient network architectures, its three-step process -- pre-training, pruning, and re-training -- is computationally expensive, as the dense model must be fully pre-trained. Luckily, early-bird tickets can be discovered within neural networks that are minimally pre-trained, allowing for the creation of efficient, LTH-inspired training procedures. Yet, no theoretical foundation of this phenomenon exists. We derive an analytical bound for the number of pre-training iterations that must be performed for a winning ticket to be discovered, thus providing a theoretical understanding of when and why such early-bird tickets exist. By adopting a greedy forward selection pruning strategy, we directly connect the pruned networks performance to the loss of the dense network from which it was derived, revealing a threshold in the number of pre-training iterations beyond which high-performing subnetworks are guaranteed to exist. We demonstrate the validity of our theoretical results across a variety of architectures and datasets, including multi-layer perceptrons (MLPs) trained on MNIST and several deep convolutional neural network (CNN) architectures trained on CIFAR10 and ImageNet.
The lottery ticket hypothesis states that sparse subnetworks exist in randomly initialized dense networks that can be trained to the same accuracy as the dense network they reside in. However, the subsequent work has failed to replicate this on large-scale models and required rewinding to an early stable state instead of initialization. We show that by using a training method that is stable with respect to linear mode connectivity, large networks can also be entirely rewound to initialization. Our subsequent experiments on common vision tasks give strong credence to the hypothesis in Evci et al. (2020b) that lottery tickets simply retrain to the same regions (although not necessarily to the same basin). These results imply that existing lottery tickets could not have been found without the preceding dense training by iterative magnitude pruning, raising doubts about the use of the lottery ticket hypothesis.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا