Do you want to publish a course? Click here

Quantum error-correcting codes from matrix-product codes related to quasi-orthogonal matrices and quasi-unitary matrices

334   0   0.0 ( 0 )
 Added by Meng Cao
 Publication date 2020
and research's language is English
 Authors Meng Cao




Ask ChatGPT about the research

Matrix-product codes over finite fields are an important class of long linear codes by combining several commensurate shorter linear codes with a defining matrix over finite fields. The construction of matrix-product codes with certain self-orthogonality over finite fields is an effective way to obtain good $q$-ary quantum codes of large length. Specifically, it follows from CSS construction (resp. Hermitian construction) that a matrix-product code over $mathbb{F}_{q}$ (resp. $mathbb{F}_{q^{2}}$) which is Euclidean dual-containing (resp. Hermitian dual-containing) can produce a $q$-ary quantum code. In order to obtain such matrix-product codes, a common way is to construct quasi-orthogonal matrices (resp. quasi-unitary matrices) as the defining matrices of matrix-product codes over $mathbb{F}_{q}$ (resp. $mathbb{F}_{q^{2}}$). The usage of NSC quasi-orthogonal matrices or NSC quasi-unitary matrices in this process enables the minimum distance lower bound of the corresponding quantum codes to reach its optimum. This article has two purposes: the first is to summarize some results of this topic obtained by the author of this article and his cooperators in cite{Cao2020Constructioncaowang,Cao2020New,Cao2020Constructionof}; the second is to add some new results on quasi-orthogonal matrices (resp. quasi-unitary matrices), Euclidean dual-containing (resp. Hermitian dual-containing) matrix-product codes and $q$-ary quantum codes derived from these newly constructed matrix-product codes.

rate research

Read More

The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudit-flip errors. Moreover, they use pre-shared entanglement between encoder and decoder to simplify the theory of quantum error correction and increase the communication capacity. Thus, asymmetric EAQECCs can be constructed from any pair of classical linear codes over an arbitrary field. Their parameters are described and a Gilbert-Varshamov bound is presented. Explicit parameters of asymmetric EAQECCs from BCH codes are computed and examples exceeding the introduced Gilbert-Varshamov bound are shown.
Entanglement-assisted quantum error correcting codes (EAQECCs) constructed from Reed-Solomon codes and BCH codes are considered in this work. It is provided a complete and explicit formula for the parameters of EAQECCs coming from any Reed-Solomon code, for the Hermitian metric, and from any BCH code with extension degree $2$ and consecutive cyclotomic cosets, for both the Euclidean and the Hermitian metric. The main task in this work is the computation of a completely general formula for $c$, the minimum number of required maximally entangled quantum states.
We prove that the known formulae for computing the optimal number of maximally entangled pairs required for entanglement-assisted quantum error-correcting codes (EAQECCs) over the binary field hold for codes over arbitrary finite fields as well. We also give a Gilbert-Varshamov bound for EAQECCs and constructions of EAQECCs coming from punctured self-orthogonal linear codes which are valid for any finite field.
We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction.
There is a local ring $E$ of order $4,$ without identity for the multiplication, defined by generators and relations as $E=langle a,b mid 2a=2b=0,, a^2=a,, b^2=b,,ab=a,, ba=brangle.$ We study a special construction of self-orthogonal codes over $E,$ based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over $E,$ and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over $F_4.$ The classical invariant theory bound for the weight enumerators of this class of codesimproves the known bound on the minimum distance of Type IV codes over $E.$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا