Hypocoercivity and reaction-diffusion limit for a nonlinear generation-recombination model


Abstract in English

A reaction-kinetic model for a two-species gas mixture undergoing pair generation and recombination reactions is considered on a flat torus. For dominant scattering with a non-moving constant-temperature background the macroscopic limit to a reaction-diffusion system is carried out. Exponential decay to equilibrium is proven for the kinetic model by hypocoercivity estimates. This seems to be the first rigorous derivation of a nonlinear reaction-diffusion system from a kinetic model as well as the first hypocoercivity result for a nonlinear kinetic problem without smallness assumptions. The analysis profits from uniform bounds of the solution in terms of the equilibrium velocity distribution.

Download