The changes of broad emission lines should be a crucial issue to understanding the physical properties of changing-look active galactic nucleus (CL-AGN). Here, we present the results of an intensive and homogeneous 6-month long reverberation mapping (RM) monitoring campaign during a low-activity state of the CL-AGN Seyfert galaxy NGC 3516. Photometric and spectroscopic monitoring was carried out during 2018--2019 with the Lijiang 2.4 m telescope. The sampling is 2 days in most nights, and the average sampling is $sim$3 days. The rest frame time lags of H$alpha$ and H$beta$ are $tau_{rm{H}alpha}=7.56^{+4.42}_{-2.10}$ days and $tau_{rm{H}beta}=7.50^{+2.05}_{-0.77}$ days, respectively. From a RMS H$beta$ line dispersion of $sigma_{rm{line}} = 1713.3 pm 46.7$ $rm{km}$ $rm{s^{-1}}$ and a virial factor of $f_{sigma}$ = 5.5, the central black hole mass of NGC 3516 is estimated to be $M_{rm{BH}}= 2.4^{+0.7}_{-0.3} times 10^{7} M_{odot}$, which is in agreement with previous estimates. The velocity-resolved delays show that the time lags increase towards negative velocity for both H$alpha$ and H$beta$. The velocity-resolved RM of H$alpha$ is done for the first time. These RM results are consistent with other observations before the spectral type change, indicating a basically constant BLR structure during the changing-look process. The CL model of changes of accretion rate seems to be favored by long-term H$beta$ variability and RM observations of NGC 3516.