Do you want to publish a course? Click here

XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual Transformer Encoders

158   0   0.0 ( 0 )
 Added by Shuming Ma
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multilingual machine translation enables a single model to translate between different languages. Most existing multilingual machine translation systems adopt a randomly initialized Transformer backbone. In this work, inspired by the recent success of language model pre-training, we present XLM-T, which initializes the model with an off-the-shelf pretrained cross-lingual Transformer encoder and fine-tunes it with multilingual parallel data. This simple method achieves significant improvements on a WMT dataset with 10 language pairs and the OPUS-100 corpus with 94 pairs. Surprisingly, the method is also effective even upon the strong baseline with back-translation. Moreover, extensive analysis of XLM-T on unsupervised syntactic parsing, word alignment, and multilingual classification explains its effectiveness for machine translation. The code will be at https://aka.ms/xlm-t.



rate research

Read More

Previous works mainly focus on improving cross-lingual transfer for NLU tasks with multilingual pretrained encoder (MPE), or improving the translation performance on NMT task with BERT. However, how to improve the cross-lingual transfer of NMT model with multilingual pretrained encoder is under-explored. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with one parallel dataset and an off-the-shelf MPE, then is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. The SixT model leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. The extensive experiments prove that SixT significantly improves the translation quality of the unseen languages. With much less computation cost and training data, our model achieves better performance on many-to-English testsets than CRISS and m2m-100, two strong multilingual NMT baselines.
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enabled one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
The recently proposed massively multilingual neural machine translation (NMT) system has been shown to be capable of translating over 100 languages to and from English within a single model. Its improved translation performance on low resource languages hints at potential cross-lingual transfer capability for downstream tasks. In this paper, we evaluate the cross-lingual effectiveness of representations from the encoder of a massively multilingual NMT model on 5 downstream classification and sequence labeling tasks covering a diverse set of over 50 languages. We compare against a strong baseline, multilingual BERT (mBERT), in different cross-lingual transfer learning scenarios and show gains in zero-shot transfer in 4 out of these 5 tasks.
While pretrained encoders have achieved success in various natural language understanding (NLU) tasks, there is a gap between these pretrained encoders and natural language generation (NLG). NLG tasks are often based on the encoder-decoder framework, where the pretrained encoders can only benefit part of it. To reduce this gap, we introduce DeltaLM, a pretrained multilingual encoder-decoder model that regards the decoder as the task layer of off-the-shelf pretrained encoders. Specifically, we augment the pretrained multilingual encoder with a decoder and pre-train it in a self-supervised way. To take advantage of both the large-scale monolingual data and bilingual data, we adopt the span corruption and translation span corruption as the pre-training tasks. Experiments show that DeltaLM outperforms various strong baselines on both natural language generation and translation tasks, including machine translation, abstractive text summarization, data-to-text, and question generation. The code and pretrained models are available at url{https://aka.ms/deltalm}.
110 - Xian Li , Changhan Wang , Yun Tang 2020
We present a simple yet effective approach to build multilingual speech-to-text (ST) translation by efficient transfer learning from pretrained speech encoder and text decoder. Our key finding is that a minimalistic LNA (LayerNorm and Attention) finetuning can achieve zero-shot crosslingual and cross-modality transfer ability by only finetuning less than 10% of the pretrained parameters. This enables effectively leveraging large pretrained models with low training cost. Using wav2vec 2.0 for acoustic modeling, and mBART for multilingual text generation, our approach advanced the new state-of-the-art for 34 translation directions (and surpassing cascaded ST for 23 of them) on large-scale multilingual ST benchmark CoVoST 2 (+6.4 BLEU on average across 15 En-X directions and +5.1 BLEU on average across 19 X-En directions). Our approach demonstrates strong zero-shot performance in a many-to-many multilingual model (+5.7 BLEU on average across 18 non-English directions), making it an appealing approach for attaining high-quality speech translation with improved parameter and data efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا