The effect of axion-like particles on the spectrum of the extragalactic gamma-ray background


Abstract in English

Axion-like particles (ALPs) provide a feasible explanation for the observed low TeV opacity of the Universe. If the low TeV opacity is caused by ALP, then the $>{rm TeV}$ fluxes of unresolved extragalactic point sources will be correspondingly enhanced, resulting in an enhancement of the observed EGB spectrum at high energies. In this work, we for the first time investigate the ALP effect on the EGB spectrum. Our results show that the existence of ALPs can cause the EGB spectrum to deviate from a pure EBL absorption case. The deviation occurs at about $sim$1 TeV and current EGB measurements by Fermi-LAT cannot identify such an effect. The observation from forthcoming VHE instruments like LHAASO and CTA may be useful for studying this effect. We find that although most of the sensitive ALP parameters have been ruled out by existing ALP results, some unrestricted parameters could be probed with the EGB observation around 10 TeV.

Download