On the monotonicity property of the generalized eigenvalue for weakly-coupled cooperative elliptic systems


Abstract in English

We consider general linear non-degenerate weakly-coupled cooperative elliptic systems and study certain monotonicity properties of the generalized principal eigenvalue in $mathbb{R}^d$ with respect to the potential. It is shown that monotonicity on the right is equivalent to the recurrence property of the twisted operator which is, in turn, equivalent to the minimal growth property at infinity of the principal eigenfunctions. The strict monotonicity property of the principal eigenvalue is shown to be equivalent with the exponential stability of the twisted operators. An equivalence between the monotonicity property on the right and the stochastic representation of the principal eigenfunction is also established.

Download