Do you want to publish a course? Click here

OSTeC: One-Shot Texture Completion

102   0   0.0 ( 0 )
 Added by Baris Gecer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The last few years have witnessed the great success of non-linear generative models in synthesizing high-quality photorealistic face images. Many recent 3D facial texture reconstruction and pose manipulation from a single image approaches still rely on large and clean face datasets to train image-to-image Generative Adversarial Networks (GANs). Yet the collection of such a large scale high-resolution 3D texture dataset is still very costly and difficult to maintain age/ethnicity balance. Moreover, regression-based approaches suffer from generalization to the in-the-wild conditions and are unable to fine-tune to a target-image. In this work, we propose an unsupervised approach for one-shot 3D facial texture completion that does not require large-scale texture datasets, but rather harnesses the knowledge stored in 2D face generators. The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator, based on the visible parts. Finally, we stitch the most visible textures at different angles in the UV image-plane. Further, we frontalize the target image by projecting the completed texture into the generator. The qualitative and quantitative experiments demonstrate that the completed UV textures and frontalized images are of high quality, resembles the original identity, can be used to train a texture GAN model for 3DMM fitting and improve pose-invariant face recognition.



rate research

Read More

We introduce one-shot texture segmentation: the task of segmenting an input image containing multiple textures given a patch of a reference texture. This task is designed to turn the problem of texture-based perceptual grouping into an objective benchmark. We show that it is straight-forward to generate large synthetic data sets for this task from a relatively small number of natural textures. In particular, this task can be cast as a self-supervised problem thereby alleviating the need for massive amounts of manually annotated data necessary for traditional segmentation tasks. In this paper we introduce and study two concrete data sets: a dense collage of textures (CollTex) and a cluttered texturized Omniglot data set. We show that a baseline model trained on these synthesized data is able to generalize to natural images and videos without further fine-tuning, suggesting that the learned image representations are useful for higher-level vision tasks.
288 - Kai Zhu , Wei Zhai , Zheng-Jun Zha 2019
In this paper, we tackle one-shot texture retrieval: given an example of a new reference texture, detect and segment all the pixels of the same texture category within an arbitrary image. To address this problem, we present an OS-TR network to encode both reference and query image, leading to achieve texture segmentation towards the reference category. Unlike the existing texture encoding methods that integrate CNN with orderless pooling, we propose a directionality-aware module to capture the texture variations at each direction, resulting in spatially invariant representation. To segment new categories given only few examples, we incorporate a self-gating mechanism into relation network to exploit global context information for adjusting per-channel modulation weights of local relation features. Extensive experiments on benchmark texture datasets and real scenarios demonstrate the above-par segmentation performance and robust generalization across domains of our proposed method.
109 - Yinglin Duan 2021
Motion completion is a challenging and long-discussed problem, which is of great significance in film and game applications. For different motion completion scenarios (in-betweening, in-filling, and blending), most previous methods deal with the completion problems with case-by-case designs. In this work, we propose a simple but effective method to solve multiple motion completion problems under a unified framework and achieves a new state of the art accuracy under multiple evaluation settings. Inspired by the recent great success of attention-based models, we consider the completion as a sequence to sequence prediction problem. Our method consists of two modules - a standard transformer encoder with self-attention that learns long-range dependencies of input motions, and a trainable mixture embedding module that models temporal information and discriminates key-frames. Our method can run in a non-autoregressive manner and predict multiple missing frames within a single forward propagation in real time. We finally show the effectiveness of our method in music-dance applications.
Few-shot learning aims to recognize novel classes with few examples. Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, results show that the fine-tuning step makes marginal improvements. In this paper, 1) we figure out the reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning feature extractor is less meaningful; 2) instead of fine-tuning feature extractor, we focus on estimating more representative prototypes. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative features for seen attributes as priors. Second, a part/attribute transfer network is designed to learn to infer the representative features for unseen attributes as supplementary priors. Finally, a prototype completion network is devised to learn to complete prototypes with these priors. Moreover, to avoid the prototype completion error, we further develop a Gaussian based prototype fusion strategy that fuses the mean-based and completed prototypes by exploiting the unlabeled samples. Extensive experiments show that our method: (i) obtains more accurate prototypes; (ii) achieves superior performance on both inductive and transductive FSL settings.
90 - Hongchen Luo 2021
Affordance detection refers to identifying the potential action possibilities of objects in an image, which is an important ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we consider the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection (OS-AD) network that firstly estimates the purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OS-AD can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a Purpose-driven Affordance Dataset (PAD) by collecting and labeling 4k images from 31 affordance and 72 object categories. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality. The benchmark suite is at ProjectPage.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا