Do you want to publish a course? Click here

Error bounds for port-Hamiltonian model and controller reduction based on system balancing

55   0   0.0 ( 0 )
 Added by Philipp Schulze
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study linear quadratic Gaussian (LQG) control design for linear port-Hamiltonian systems. To this end, we exploit the freedom in choosing the weighting matrices and propose a specific choice which leads to an LQG controller which is port-Hamiltonian and, thus, in particular stable and passive. Furthermore, we construct a reduced-order controller via balancing and subsequent truncation. This approach is closely related to classical LQG balanced truncation and shares a similar a priori error bound with respect to the gap metric. By exploiting the non-uniqueness of the Hamiltonian, we are able to determine an optimal pH representation of the full-order system in the sense that the error bound is minimized. In addition, we discuss consequences for pH-preserving balanced truncation model reduction which results in two different classical H-infinity-error bounds. Finally, we illustrate the theoretical findings by means of two numerical examples.



rate research

Read More

87 - Zhuo Li , Xu Zhou , Junruo Gao 2021
Aiming at the local overload of multi-controller deployment in software-defined networks, a load balancing mechanism of SDN controller based on reinforcement learning is designed. The initial paired migrate-out domain and migrate-in domain are obtained by calculating the load ratio deviation between the controllers, a preliminary migration triplet, contains migration domain mentioned above and a group of switches which are subordinated to the migrate-out domain, makes the migration efficiency reach the local optimum. Under the constraint of the best efficiency of migration in the whole and without migration conflict, selecting multiple sets of triples based on reinforcement learning, as the final migration of this round to attain the global optimal controller load balancing with minimum cost. The experimental results illustrate that the mechanism can make full use of the controllers resources, quickly balance the load between controllers, reduce unnecessary migration overhead and get a faster response rate of the packet-in request.
102 - Warren Adams , Akshay Gupte , 2017
Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of $[0,1]^n$. This implies additive error bounds for relaxing a polynomial optimization problem by convexifying each monomial separately. Our main error bounds depend primarily on the degree of the monomial, making them easy to compute. Since monomial convexification studies depend on the bounds on the associated variables, in the second part, we conduct an error analysis for a multilinear monomial over two different types of box constraints. As part of this analysis, we also derive the convex hull of a multilinear monomial over $[-1,1]^n$.
This paper investigates a model reduction problem for linear directed network systems, in which the interconnections among the vertices are described by general weakly connected digraphs. First, the definitions of pseudo controllability and observability Gramians are proposed for semistable systems, and their solutions are characterized by Lyapunov-like equations. Then, we introduce a concept of vertex clusterability to guarantee the boundedness of the approximation error and use the newly proposed Gramians to facilitate the evaluation of the dissimilarity of each pair of vertices. An clustering algorithm is thereto provided to generate an appropriate graph clustering, whose characteristic matrix is employed as the projections in the Petrov-Galerkin reduction framework. The obtained reduced-order system preserves the weakly connected directed network structure, and the approximation error is computed by the pseudo Gramians. Finally, the efficiency of the proposed approach is illustrated by numerical examples.
Passivity-based control (PBC) for port-Hamiltonian systems provides an intuitive way of achieving stabilization by rendering a system passive with respect to a desired storage function. However, in most instances the control law is obtained without any performance considerations and it has to be calculated by solving a complex partial differential equation (PDE). In order to address these issues we introduce a reinforcement learning approach into the energy-balancing passivity-based control (EB-PBC) method, which is a form of PBC in which the closed-loop energy is equal to the difference between the stored and supplied energies. We propose a technique to parameterize EB-PBC that preserves the systemss PDE matching conditions, does not require the specification of a global desired Hamiltonian, includes performance criteria, and is robust to extra non-linearities such as control input saturation. The parameters of the control law are found using actor-critic reinforcement learning, enabling learning near-optimal control policies satisfying a desired closed-loop energy landscape. The advantages are that near-optimal controllers can be generated using standard energy shaping techniques and that the solutions learned can be interpreted in terms of energy shaping and damping injection, which makes it possible to numerically assess stability using passivity theory. From the reinforcement learning perspective, our proposal allows for the class of port-Hamiltonian systems to be incorporated in the actor-critic framework, speeding up the learning thanks to the resulting parameterization of the policy. The method has been successfully applied to the pendulum swing-up problem in simulations and real-life experiments.
Sparse matrix-vector and matrix-matrix multiplication (SpMV and SpMM) are fundamental in both conventional (graph analytics, scientific computing) and emerging (sparse DNN, GNN) domains. Workload-balancing and parallel-reduction are widely-used design principles for efficient SpMV. However, prior work fails to resolve how to implement and adaptively use the two principles for SpMV/MM. To overcome this obstacle, we first complete the implementation space with optimizations by filling three missing pieces in prior work, including: (1) We show that workload-balancing and parallel-reduction can be combined through a segment-reduction algorithm implemented with SIMD-shuffle primitives. (2) We show that parallel-reduction can be implemented in SpMM through loading the dense-matrix rows with vector memory operations. (3) We show that vectorized loading of sparse rows, being a part of the benefit of parallel-reduction, can co-exist with sequential-reduction in SpMM through temporally caching sparse-matrix elements in the shared memory. In terms of adaptive use, we analyze how the benefit of two principles change with two characteristics from the input data space: the diverse sparsity pattern and dense-matrix width. We find the benefit of the two principles fades along with the increased total workload, i.e. the increased dense-matrix width. We also identify, for SpMV and SpMM, different sparse-matrix features that impact workload-balancing effectiveness. Our design consistently exceeds cuSPARSE by 1.07-1.57x on different GPUs and dense matrix width, and the kernel selection rules involve 5-12% performance loss compared with optimal choices. Our kernel is being integrated into popular graph learning frameworks to accelerate GNN training.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا