Do you want to publish a course? Click here

Security Engineering for ISO 21434

64   0   0.0 ( 0 )
 Added by Vivek Nigam
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The ISO 21434 is a new standard that has been proposed to address the future challenges of automotive cybersecurity. This white paper takes a closer look at the ISO 21434 helping engineers to understand the ISO 21434 parts, the key activities to be carried out and the main artefacts that shall be produced. As any certification, obtaining the ISO 21434 certification can be daunting at first sight. Engineers have to deploy processes that include several security risk assessment methods to produce security arguments and evidence supporting item security claims. In this white paper, we propose a security engineering approach that can ease this process by relying on Rigorous Security Assessments and Incremental Assessment Maintenance methods supported by automation. We demonstrate by example that the proposed approach can greatly increase the quality of the produced artefacts, the efficiency to produce them, as well as enable continuous security assessment. Finally, we point out some key research directions that we are investigating to fully realize the proposed approach.



rate research

Read More

Temporal epistemic logic is a well-established framework for expressing agents knowledge and how it evolves over time. Within language-based security these are central issues, for instance in the context of declassification. We propose to bring these two areas together. The paper presents a computational model and an epistemic temporal logic used to reason about knowledge acquired by observing program outputs. This approach is shown to elegantly capture standard notions of noninterference and declassification in the literature as well as information flow properties where sensitive and public data intermingle in delicate ways.
Despite widespread use of smartphones, there is no measurement standard targeted at smartphone security behaviors. In this paper we translate a well-known cybersecurity behavioral scale into the smartphone domain and show that we can improve on this translation by following an established psychometrics approach surveying 1011 participants. We design a new 14-item Smartphone Security Behavioral Scale (SSBS) exhibiting high reliability and good fit to a two-component behavioural model based on technical versus social protection strategies. We then demonstrate how SSBS can be applied to measure the influence of mental health issues on smartphone security behavior intentions. We found significant correlations that predict SSBS profiles from three types of MHIs. Conversely, we are able to predict presence of MHIs using SSBS profiles.We obtain prediction AUCs of 72.1% for Internet addiction,75.8% for depression and 66.2% for insomnia.
Due to their interesting features, blockchains have become popular in recent years. They are full-stack systems where security is a critical factor for their success. The main focus of this work is to systematize knowledge about security and privacy issues of blockchains. To this end, we propose a security reference architecture based on models that demonstrate the stacked hierarchy of various threats (similar to the ISO/OSI hierarchy) as well as threat-risk assessment using ISO/IEC 15408. In contrast to the previous surveys, we focus on the categorization of security incidents based on their origins and using the proposed architecture we present existing prevention and mitigation techniques. The scope of our work mainly covers aspects related to the decentralized nature of blockchains, while we mention common operational security issues and countermeasures only tangentially.
124 - Rui Zhang , Rui Xue , Ling Liu 2021
Healthcare blockchains provide an innovative way to store healthcare information, execute healthcare transactions, and build trust for healthcare data sharing and data integration in a decentralized open healthcare network environment. Although the healthcare blockchain technology has attracted broad interests and attention in industry, government and academia, the security and privacy concerns remain the focus of debate when deploying blockchains for information sharing in the healthcare sector from business operation to research collaboration. This paper focuses on the security and privacy requirements for medical data sharing using blockchain, and provides a comprehensive analysis of the security and privacy risks and requirements, accompanied by technical solution techniques and strategies. First, we discuss the security and privacy requirements and attributes required for electronic medical data sharing by deploying the healthcare blockchain. Second, we categorize existing efforts into three reference blockchain usage scenarios for electronic medical data sharing, and discuss the technologies for implementing these security and privacy properties in the three categories of usage scenarios for healthcare blockchain, such as anonymous signatures, attribute-based encryption, zero-knowledge proofs, verification techniques for smart contract security. Finally, we discuss other potential blockchain application scenarios in healthcare sector. We conjecture that this survey will help healthcare professionals, decision makers, and healthcare service developers to gain technical and intuitive insights into the security and privacy of healthcare blockchains in terms of concepts, risks, requirements, development and deployment technologies and systems.
Security metrics present the security level of a system or a network in both qualitative and quantitative ways. In general, security metrics are used to assess the security level of a system and to achieve security goals. There are a lot of security metrics for security analysis, but there is no systematic classification of security metrics that are based on network reachability information. To address this, we propose a systematic classification of existing security metrics based on network reachability information. Mainly, we classify the security metrics into host-based and network-based metrics. The host-based metrics are classified into metrics ``without probability and with probability, while the network-based metrics are classified into path-based and non-path based. Finally, we present and describe an approach to develop composite security metrics and its calculations using a Hierarchical Attack Representation Model (HARM) via an example network. Our novel classification of security metrics provides a new methodology to assess the security of a system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا