Landau quantization in tilted Weyl semimetals with broken symmetry


Abstract in English

Broken symmetry and tilting effects are ubiquitous in Weyl semimetals (WSMs). Therefore, it is crucial to understand their impacts on the materials electronic and optical properties. Here, using a realistic four-band model for WSMs that incorporates both the symmetry breaking and tilting effects, we study its Landau quantization and the associated magneto-absorption spectrum. We show that the Landau levels in tilted Weyl bands can be obtained by considering a non-tilt Hamiltonian through Lorentz boost. However, broken symmetry effects can generate an additional term in the Hamiltonian, which equivalently leads to band reconstruction. Our work provides a more realistic view of the magnetic field response of WSMs that shall be taken into account in relevant future device applications.

Download