Do you want to publish a course? Click here

Example-Driven User Intent Discovery: Empowering Users to Cross the SQL Barrier Through Query by Example

307   0   0.0 ( 0 )
 Added by Anna Fariha
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Traditional data systems require specialized technical skills where users need to understand the data organization and write precise queries to access data. Therefore, novice users who lack technical expertise face hurdles in perusing and analyzing data. Existing tools assist in formulating queries through keyword search, query recommendation, and query auto-completion, but still require some technical expertise. An alternative method for accessing data is Query by Example (QBE), where users express their data exploration intent simply by providing examples of their intended data. We study a state-of-the-art QBE system called SQuID, and contrast it with traditional SQL querying. Our comparative user studies demonstrate that users with varying expertise are significantly more effective and efficient with SQuID than SQL. We find that SQuID eliminates the barriers in studying the database schema, formalizing task semantics, and writing syntactically correct SQL queries, and thus, substantially alleviates the need for technical expertise in data exploration.



rate research

Read More

Traditional relational data interfaces require precise structured queries over potentially complex schemas. These rigid data retrieval mechanisms pose hurdles for non-expert users, who typically lack language expertise and are unfamiliar with the details of the schema. Query by Example (QBE) methods offer an alternative mechanism: users provide examples of their intended query output and the QBE system needs to infer the intended query. However, these approaches focus on the structural similarity of the examples and ignore the richer context present in the data. As a result, they typically produce queries that are too general, and fail to capture the users intent effectively. In this paper, we present SQuID, a system that performs semantic similarity-aware query intent discovery. Our work makes the following contributions: (1) We design an end-to-end system that automatically formulates select-project-join queries in an open-world setting, with optional group-by aggregation and intersection operators; a much larger class than prior QBE techniques. (2) We express the problem of query intent discovery using a probabilistic abduction model, that infers a query as the most likely explanation of the provided examples. (3) We introduce the notion of an abduction-ready database, which precomputes semantic properties and related statistics, allowing SQuID to achieve real-time performance. (4) We present an extensive empirical evaluation on three real-world datasets, including user-intent case studies, demonstrating that SQuID is efficient and effective, and outperforms machine learning methods, as well as the state-of-the-art in the related query reverse engineering problem.
Keyword spotting--or wakeword detection--is an essential feature for hands-free operation of modern voice-controlled devices. With such devices becoming ubiquitous, users might want to choose a personalized custom wakeword. In this work, we present DONUT, a CTC-based algorithm for online query-by-example keyword spotting that enables custom wakeword detection. The algorithm works by recording a small number of training examples from the user, generating a set of label sequence hypotheses from these training examples, and detecting the wakeword by aggregating the scores of all the hypotheses given a new audio recording. Our method combines the generalization and interpretability of CTC-based keyword spotting with the user-adaptation and convenience of a conventional query-by-example system. DONUT has low computational requirements and is well-suited for both learning and inference on embedded systems without requiring private user data to be uploaded to the cloud.
This paper introduces the subgraph nomination inference task, in which example subgraphs of interest are used to query a network for similarly interesting subgraphs. This type of problem appears time and again in real world problems connected to, for example, user recommendation systems and structural retrieval tasks in social and biological/connectomic networks. We formally define the subgraph nomination framework with an emphasis on the notion of a user-in-the-loop in the subgraph nomination pipeline. In this setting, a user can provide additional post-nomination light supervision that can be incorporated into the retrieval task. After introducing and formalizing the retrieval task, we examine the nuanced effect that user-supervision can have on performance, both analytically and across real and simulated data examples.
While visualizations play a crucial role in gaining insights from data, generating useful visualizations from a complex dataset is far from an easy task. Besides understanding the functionality provided by existing visualization libraries, generating the desired visualization also requires reshaping and aggregating the underlying data as well as composing different visual elements to achieve the intended visual narrative. This paper aims to simplify visualization tasks by automatically synthesizing the required program from simple visual sketches provided by the user. Specifically, given an input data set and a visual sketch that demonstrates how to visualize a very small subset of this data, our technique automatically generates a program that can be used to visualize the entire data set. Automating visualization poses several challenges. First, because many visualization tasks require data wrangling in addition to generating plots, we need to decompose the end-to-end synthesis task into two separate sub-problems. Second, because the intermediate specification that results from the decomposition is necessarily imprecise, this makes the data wrangling task particularly challenging in our context. In this paper, we address these problems by developing a new compositional visualization-by-example technique that (a) decomposes the end-to-end task into two different synthesis problems over different DSLs and (b) leverages bi-directional program analysis to deal with the complexity that arises from having an imprecise intermediate specification. We implemented our visualization-by-example algorithm and evaluate it on 83 visualization tasks collected from on-line forums and tutorials. Viser can solve 84% of these benchmarks within a 600 second time limit, and, for those tasks that can be solved, the desired visualization is among the top-5 generated by Viser in 70% of the cases.
60 - Bohao Wu , Xue Bai 2019
This paper aims to make Tales of Genji visible by using natural language processing, mathematic analysis, emiton analysis. Based on novel, mining data from content of this novel at respect of information abstracting. Summing up the fundamental method of novel visualization, our work are as follows: Based on frequency analysis, we use tf-did to abstract keyword of Newly Translated Tale of Genji, which means the most important word in each chapter. We recognize the emotion of word to analysis the emotion of each chapter of Newly Translated Tale of Genji. Next, we think about the connection between the result of emotion analysis and literature analysis, showing we can get same result by natural language processing. We build a network of all the word apperanced in Newly Translated Tale of Genji. Make a study of relationships between words. Further, we search the writer of Uji Chapters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا